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_Chapitre 1

Introduction: understand the problematic of gesture
Interaction

_aap.1| 2D and 3D Action/Gesture recognition: a challenge ? 8

= Introduction: understand the problematic of gesture interaction
= What is a gesture: the different natures of gestures

= Human Computer Interaction: new opportunities

= Gesture recognition: Isolated Gestures Classification (segmented)
= Overview of the task: recognizing isolated gestures (The overall pattern recognition process)

= Machine Learning and Pattern recognition: a short overview of some existing techniques
= Gesture classication: “Time-series” approaches
= Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

= Gesture recognition in real-time streaming (non segmented)
= Overview of the task: recognizing in real-time streaming
= Non-segmented Action Recognition: Example of one approach [Boulahia 2017]
= Presentation of experimental results using Kinect and Leap Motion

= Early Gesture recognition

INSA':

© eric.anquetil@irisa.fr




_cap.1 | 2D gesture sensors: pen-based and touch-based gestures

= Pen-based gesture interaction
= Device platforms
= Smartphone
= Digital Pen
= Tablet PC
= Electronic Whiteboard

Interactive W

!

© eric.anquetil@irisa.fr

_aap.1| 2D gesture sensors : pen-based and touch-based gestures

= Touch-based gesture interaction (touch screen)
= Multi touch based interaction (ex: whiteboarding solution...)
= Multi-user based interaction (ex: surface table, surface Hub...)

= Tracking technology: capacitive touch screen display,ultrasound, infrared...

10
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_aap.1| 3D gesture sensors: whole body gestures recognition 1

= Dynamic whole body gestures recognition DEPth ¢ Comera + IR Projector

Sensor

= Wide range of application fields: such as video
surveillance, sport video analysis, human- -
computer interaction, computer animation and o
even health-care.

Power Light

]

= Two main groups of approaches -
= RGB + Depth image recognition
= Skeleton-based action recognition

Crouching

ek ek ok Vomk v
. RGB . - i ;
= Sensor technologies — . '
= Emergence of Kinect o/ /per rebon

like sensors (2010) i ~e  Depth

Skeleton

INSA :

_aap.1 | 3D gesture sensors: Hand Gesture 12

= Dynamic hand gestures

= using skeleton joint data
= Sensor technologies

= the Leap Motion device

= Intel's RealSense depth-sensing 3D
camera

= Depth sensor + camera
= Few existing applications
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_Chapitre 2
Inputs: time-series

_cap.2 | 2D gesture inputs: Pen-based and touch-based gestures

= On-line

= Data input

|
|
i
i
v

(x, y, time, pressure) / signal : sequences of 2D points

, Pen-up
strokes /| trajectory
0 7 X
N : ) Pen
s 3 down
Pen-up T T @
Y V Pen-down \\\.iepoint:(x,y,time, pression )
trajectory B
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_aap.2| 2D gesture inputs: Multi-stroke and Multi-touch

= Multi-stroke and Multi-touch Gesture

Multi-stroke Multi-touch
(sequence of strokes) (several strokes in //)
1 1Sy q 1
, 2 |
5 “ 2 3 i :'_: S3 . — Sy

|
|
[ , !
]
6)__4/ No Time overlap t

= Several trajectories to consider

+ Strokes are synchronized or partial

% Strokes are written in sequence synchronized
- Shape - Shape
- Spatial relation - Spatial relation
- Temporal relation
INSN n":‘mi:' " © eric.anquetil@irisa.fr

_aap2| 3D gesture inputs

= Two main groups of approaches:
= RGB-D based => input data = a sequence of frames 1z s 4 5 6 7 8 9.

it it

= Skeleton based
= By using Kinect, LeapMotion
= a sequence of 3D points = trajectory, angular informatiol

\ | | -
ke - e : | 3 \ N
SESTITUT HATIONAL - - " X - 2 e, MR e S
INSN O e - 7 eric.anquetil@irisa.fr
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_aap.2 | INnputs: Trajectories / One generic approach for 2D/3D gesture recognition?

= 3D gesture
= A robust approach : Skeleton based approach
= capture the essential structure of a subject in an easily understandable way

= robust to variations in viewpoint and illumination
= skeleton data consist in trajectories of the body joints
= Trajectories: a unified way to consider gestures
= Same data type: trajectories or signal
= 3D gesture trajectories may be processed similarly to 2D trajectories

= Moreover from Graphonomic point of view
= 3D and 2D gestures : a human is the performer

\{ G:{\;M?,

| /\,_/; / : 0
A \/ﬁ acC jon=

INSA =
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Introduction to Gesture Interaction




_aap.3| Gesture interaction

= General Introduction based on [Zhaoxin Chen 2016]
= Touch gesture examples[1]

Drag Pinch Rotate eco
e thout e i Touch surface with two fingers and move
Moie SroRde) ovexiduiace ooy t';ﬁﬂncg?@mw fogers g them in a clockwize or counterciockwioe

comact

[1] Touch gesture reference guide, Luke Wroblewski, http://www.lukew.com/

© eric.anquetil@irisa.fr
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_aap.3| Gesture interaction: Mono Stroke

= Development of gesture interaction

@ >
0 Mono touch Number of strokes
Mono stroke

Tap Handwritten character
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_aap.3| Gesture interaction: Multi-Stroke

= Development of gesture interaction

Number of strokes

%

@ ® >
0 Mono touch Mono touch
Mono stroke Multi-stroke
]
LYY .
Math symbol Icon

Chinese character

© eric.anquetil@irisa.fr

_aap.3| Gesture interaction

= Development of gesture interaction

5

¥
Multi-touch

Pinch

INSA =5

Mono touch ./;
Mono stroke Multi-stroke

rd

Number of strokes

Rotate
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_aap.3| Gesture interaction: Direct and Indirect commands 2

= Two types of interactions

a/\t\-»a

Direct manipulation Indirect command

STITUT AT
INSN priedpaly i © eric.anquetil@irisa.fr
......

_aap.3| Gesture interaction: Direct and Indirect commands

= What if a user wants to use the multi-touch gesture to make a command instead of manipulation.

< > » Select and copy
y R

/ \/\ » Paste at somewhere

How to recognize a multi-touch gesture as indirect command? ]

© eric.anquetil@irisa.fr

INSA




_aap.3| Gesture interaction: Direct and Indirect commands

= Is it possible to merge these two interactions into a same interface

™,

g / \/\\:\
Pinch Paste

Direct manipulation Indirect command

[ How to support these two interactions in a same context? ]

LSTITUT MATIOHAL
INSN NPOBHTS © eric.anquetil@irisa.fr
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_aap3| Gesture interaction: multi-touch gestures

= Open more possibilities to use multi-touch gestures
= complex gesture for indirect commands
= mix the direct manipulation and indirect command

@ >
Mono touch Mono touch Number of strokes
Mono stroke Multi-stroke
""""""""""" Multi-touch
Multi-touch
direct &&
indirect
Pinch Paste

INSA':
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_aap.3| Gesture interaction: Multi-user interaction 27
|

= Multi-user interaction
= to deal with several gestures in the same time

Number of users

1

1 >

: Ll
Mono touch | Aono touch Number of strokes
Mono stroke ! Multi-stroke

3

'CI)/ Multi-touch

Multi-touch
direct &&
indirect
_owp.3| Perspective : future of Pen and Touch interaction [Pfeuffer CHI 2017] 2

= Example of novel way of
interaction: Thumb + Pen
interactions
= Support simultaneous pen and
touch interaction, with both
hands

= allow changing the mode of
the pen

= changing the mode that
applies to the pen conventions.

= additional navigation

functionality
[ |
[Pleuffer 2017] Thumb + Pen Interaction on Tablets Figure 1: Thumb + Pen interaction enables simultaneous
Ken Pfeuffer; Ken Hinckley, Michel Pahud, Bill Buxton bimanual pen+touch while holding a tablet with the off-hand.

Microsoft Research, Redmond, WA, USA
Interactive Systems, Lancaster University, UK
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_Chapitre 4

Intra/inter -class variability (shape, spatial and

temporal)

_cap.4 | Intra/Inter —class: shape variabilities

PATTERN
RECOGNITION

Within-class
variability

Between-class
confusion

30

Intrinsic stable property
modeling

Introduction of discriminating
knowledge

ETITLT MATIONAL
DES SCENCEY
APPLIDUFTS.
RENRES
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_«ana | Intra/Inter —class: shape variabilities 31

= Writer dependent versus Writer-independent recognizer
= Resource cost
= Ambiguity of characters between different writers

= No ambiguity for each writer

u Y Cor n h
= [Mouchére07] writer 1 | U\ C
N
Writer 2 /(/( V\ j(
ONT Y N
Writer 3 \T \/j \\ m
Writer 4 /( \(\ \ /@\
NN
Writer 5 i R m h

© eric.anquetil@irisa.fr
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_aap.4 | Intra/Inter —class: temporal and spatial variabilities

/ | Temporal sliding window I \

--- Frames

= Temporal variability
= Occurs when subjects perform gestures with

H Instance 1
different speeds Figh spood _—
R frame
H H HH Instance 2 zf A ﬁ': i
= Inter-class spatial variability Istance2 L T 1 ME
. Qifferent gesture cIas_ses are likely to result in \_ Ty TS V4
different amount of displacements
A i . (.-‘llr\-'l.]i“!fﬂl' s
= Intra-class spatial variability o S % e
. . . ’ g
= Same action class with different amount of i & \ Foa o
displacements ~s % 7 s
= In some applications, capturing such intra-class R-—_T o< =
variabilities might be desirable as it brings additional Class Ci Class Cj
information and could allow for different  Same shapes and
interpretations of the same class of gesture. e, 2
OtheWIse need to mUSt be neUtraIized' Different shapes nlld\m—bmnt displacements

Fig. 1. Illustration with a single joint trajectory of intra-class spatial vari-
ability within a class Ci (left) and inter-class spatial variability between Ci
and Cj (right).

[Said Yacine
Boulahia 2017]

INSA




_aap.4 | Gesture Recognition: a transversal challenge

Application

Human computer
interaction

Pattern recognition

Animation

3D/2D actions

Map view

Document composition

Mono touch & Multi-touch
Direct & Indirect command
Multi-user interaction

Isolated multi-touch gesture recognition
Non segmented gesture recognition
Early recognition for touch gesture
Multi-user gesture segmentation and
recognition

© eric.anquetil@irisa.fr
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Gesture recognition: Isolated Gestures Classification
(segmented




_aap.s| 2D and 3D Action/Gesture recognition: a challenge ? 35

= Gesture recognition: Isolated Gestures Classification (segmented)
= Overview of the task: recognizing isolated gestures (The overall pattern recognition process)

= Machine Learning and Pattern recognition: a short overview of some existing techniques

= Gesture classication: “Time-series” approaches
= Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

= Gesture recognition in real-time streaming (non segmented)
= Overview of the task: recognizing in real-time streaming
= Non-segmented Action Recognition: Example of one approach [Boulahia 2017]
= Presentation of experimental results using Kinect and Leap Motion

= Early Gesture recognition

SNSTITUE HATIONAL
INSN el o © eric.anquetil@irisa.fr
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_aws| Overview of the task: generic flowchart

<+ Human action recognition

Data Data ARl Feedback
Capture processing  recognition

~ Pre-segmented action
recognition

Online action
recognition




_aap.s| The overall pattern recognition process (segmented gestures)

37

= The overall process for segmented dynamic gesture recognition (hand gesture illustration)

Raw Normalization Segmented
traiectories » » Amorphological » » pattern » Class label
I trajectories reprentation
 Middle
Ring 5 Index v
6 4
Py N [ Subsequence | | : S R S':“"‘/,s-m_; -Zoom
» > atan s = +— Start 3
A\ E= e \ A § -Shake
s " v y . _ .
3 L] o Thumb Level 1 ;\( \\fr \/ \M \ r/ \ \/ x SWlllg
0 el LLis i i W ! y “ecee
. \:L/"Sllﬂ_l
- .."-""// Start_1
2 4

© eric.anquetil@irisa.fr

_cnap.s | The overall pattern recognition process: Pattern Recognition

s Overview

s Classical Process

Input
Acquisition

HPre-processing

= With Deep Learning

Input
Acquisition

o

G1: foature maps
GE2E2E

rl"
r

38

Pattern Recognition System

Segmentation

Interpretation

Classification

Feature

extraction Post-processing

C3:1, mags 16@10x10
S4:1, maps 160615

52 1. mapa

S@14x1d r

e QUTPUT
T e QY

Interpretation

Post-processing

— I
| Fulcnm*ectkm | Gaussian
e Ful i
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_chap.5 | The overall pattern recognition process: Pattern Recognition 3

= Overview
Deep Learning
O
e
Q\ecog Q\'b“
Evolving
System
From scratch Big Database S0 e
\,ea((\“\g
INSN LI..I..I;;;:: 3 © eric.anquetil@irisa.fr
_cap.s | The overall pattern recognition process: Pattern Recognition 40

= "Dynamic /Time-series” approaches (AMRG-AIR)

= Input : Handle the sequential data with variable lengths f@"‘[@ m,@ @ _‘@ _.‘J@ _"Jﬁ) "'W

=« Elastic Matching (Dynamic Time Wrapping, DTW)
- similarity between two sequences
« Hidden Markov Model (HMM)
« Recurrent neural networks (RNNs), Time, Space Delay Neural R
Network (TDNN, SDNN) v
= long short-term memory (LSTM) network - N

= "Static” approaches (ATI)

= Input : Feature vector (low level representation)
= Recognition system:
Classifier (learning and generalization phase)
—Support Vector Machine (SVM)
— Neural Network (MLP, RBF,....),
— Fuzzy Inference System (FIS),
—Decision tree, ...
= CNN: Convolutional Neural Networks

X2

X1

Activatio;1 degree
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_cap.s | The overall pattern recognition process (segmented gestures): Pattern Recognition

= "Structural” approaches
= Input
= Primitives - feature vector (high level representation)
=« Based on fine analysis of the pattern
= Recognition system: Classifier (learning and generalization
phase)
Possibly the same classifier as “statistical” approaches
Fuzzy Inference System (FIS), Decision Tree, ...
= Advantage: transparent system, possible optimization
Drawback : more difficult to design

41

M,

= Others My
= K nearest neighbors (KNN) (without Learning phase ...)... need ﬁAAA z?ﬁA
to define a distance (ex: DTW...) AN 2
= Hybrid Approaches : HMM + NN 00’0 ——
00%08 (. 2))
INSA :
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Gesture classication: “Time-series” approaches




_aap.s | Gesture classication: “Time-series” approaches 43

= Many fields to consider time-ordered Series of Data:

= Motion/Gesture

= M. Morel, C. Achard, R. Kulpa, and S. Dubuisson, “Automatic evaluation of sports motion: a generic computation of spatial and
temporal errors”, Image and 'Vision Computing, 'vol. 64, pp. 67-78, 2017.

= M. T. Pham, R. Moreau, and P. Boulanger, “Three-dimensional gesture comparison using curvature analysis of position and
orientation,” in EMBC'10, pp. 6345-6348, IEEE, 2010.

=« F. Zhou and F. D. la Torre Frade, “Canonical time warBing for alignment of human behavior,” in Advances in Neural Information
Processing Systems Conference (NIPS), December 2009.

= Handwriting

= L Guler and M. Meghdadi, “A different approach to off-line handwritten signature verification using the optimal dynamic time
warping algorithm,” Digital Signal Processing, vol. 18, no. 6, pp. 940-950, 2008.

« Mitoma, H., S. Uchida, and H. Sakoe. Online character recognition based on elastic matching and quadratic discrimination. in Eighth
International Conference on Document Analysis and Recognition. 2005. p. 36-40 Vol. 31.

= Niels, R. and L. Vuurpijl, Dynamic time warping a(g) lied to Tamil character recognition. Eighth International Conference on
Document Analysis and Recognition, 2005: p. 730-734 Vol. 732.

= Biological systems

=« B. S. Raghavendra, D. Bera, A. S. BoEardikar, and R. Narayanan, “Cardiac arrhythmia detection usingI d)é,nami,c time warping of ECG
?Egts %(laihealthcare systems,” in IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-6,

7

= Audio (speech or music) signals.

= G. Kang and S. Guo, “Variable sliding window DTW speech identification algorithm,” in Ninth International Conference on Hybrid
Intelligent Systems, pp. 304-307, IEEE, 2009.

= Ning Hu, R. Dannenberg, and G. Tzanetakis, “Polyphonic audio matchinf;Eand alignment for music retrieval,” in IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, pp. 185—188, IEEE, 2003.

INSA
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_aap.s | Gesture classication: “Time-series” approaches a4

= Time-series challenges
= Difficulties: length variability
= requiring their temporal alignment as a pre-processing step

= To learn a Model

= to derive a single model from a set of signals corresponding to several
instances of the same physical process.

= Main Simple Approaches \j

« Hidden Markov Model (HMM)

= Dynamic programming (DP) / Dynamic time warping (DTW) /

[Morel 2017] Marion Morel, Catherine Achard, Richard Kulpa, and Séverine
Dubuisson. Time-series averaging using constrained dynamic time warping with
tolerance. Pattern Recognition, 2017.

INSA
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_Chapitre 7
Hidden Markov Model

_cnap.7 | Classification: Hidden Markov Models (HMM) 46

= Hidden Markov Models: approach inspired from speech recognition
= deal with sequence of observations
= find application in practically all ranges of the statistic pattern recognition
= HMMs
= Generalization of homogeneous Markov chains with a stochastic process on two stochastic processes

= Sequence of the states is produced by the transition probabilities aj;
= At each state is associated an emission probability b;(0)

INSA :
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_canz | HMM: Definition

= Definition

= An HMM is a double stochastic process
= an underlying stochastic process generates a sequence of states

Oz G2 -5 Qo - O

t : discrete time, regularly spaced T : length of the sequence
g € Q={qy, dy, ... O} N : the number of states

= each state emits
an observation according to a second stochastic process :
0, € 0 ={04, 05, ... O} M : number of symbols
0; : adiscrete symbofVI

Where

= Specification of an HMM A = (IT, A, B)
= A - the state transition

probability matrix - ; o] 2B
start g\ a0 > a. >
— iy = ® > o1y Yy B2,
a; = P(Qy = Jlgy = 1) e o
m T aml an T
= B- observation probability distribution b.é bﬁ* b:i
bij = P(ot = oJ'|qt = qi) i) Il I
Py . . . M
» [1 - the initial state distribution b, 20 and Z bij _
j

INSA';
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_aap.7| HMM: example

= Example of non ergodic model (left-right model)

= 3 states + 1 starting state ¢ + 1final state qf
= ¢°* and ¢f are non emitting states

= Assume there are 2 symbols to observe O = {o'=a, 0>=b}
= Example of possible observation sequence: “abbb”

02 0 08 01 o0l
0.7 0 0 06 04
=1y A=lo 0 o1 09
01 00 0 1

Transition state
probabilities

Initiale state
probabilities

Observation symbol
probabilities

INSA';

P(alq")
P(blq?)

48

[C. Viard-Gaudin]
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_aap.7| HMM: example 49

= The most probable state sequence is:
= @%, ¢’ resulting in the symbol
sequence “bb”.

= But this sequence can also be
generated by other state sequences,
such as q', ¢
= Computation of the likelihood of an observation sequence: _kj‘ 82]
= Given X = “aaa” compute the likelihood for this model : P(aaa | )
= The likelihood P(X | ) is given by the sum over all possible ways to generate X.

State Init Obs a| Trans | Obs a | Trans | Obs a | Trans Joint
sequence probability
q'a’q® 0.2 0.8 0.8 0.4 0.6 0.1 0.9 0.0027648
a'a’q® 0.2 0.8 0.1 0.1 0.1 0.1 0.9 0.0000144
J’q’q’ 0.7 0.4 0.6 0.1 0.1 0.1 0.9 0.0001512
INSN LI...I...I;::‘I " [C Viard_GaUdin] © eric.anquetil@irisa.fr
_aap.7 | HMM: basic problems 50

= The 3 basic problems for HMMs
= Problem 1 : Evaluate the probability of an observation sequence (Forward-Backward algorithm)

= Given O = (01,02, ... oT) and a model A
= How to efficiently compute the probability P(O | A) of a given observation sequence?

= Problem 2 : Find out the most likely state sequence
(Viterbi algorithm)
= Given O = (01,02, ... oT) and a model A

= how to efficiently find the optimal state sequence for which the probability of a given observation O =
(01,02, ... oT) is maximum.

= Problem 3 : Learning
(Baum-Welch algorithm)

= Given a set of training sequences {O = (01,02, ... oT)}, how to efficiently estimate the parameters of
a model A = (IT, A, B) according to the maximum likelihood criterion.

INSN NPURES © eric.anquetil@irisa.fr
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_aap.7 | HMM: Viterbi algorithm 51

= Viterbi algorithm: Solution by Dynamic Programming
= Define §,(i) the highest probability path ending in state g’
= 8t(l) = max P(qIIqZI---/qtzqi l 011021---ot | ?\')

qlquI--'lqt-l
= By induction:

S¢r1(K) = max [8(i) ay] . b(o,4), with 1< k <N

1<i<N
Memorize V., (k) = arg max(3.(i) ay)
1<i<N
q\ /
“l/
/ 1/
//
/
INSN LI..I. - 01 02 03 04 05 06 © eric.anquetil@irisa.fr
_aap.7 | HMM: Viterbi algorithm 52

= Viterbi algorithm: Solution by Dynamic Programming
1. Initialization
For 1<i<N {8,(i) = m x b(o,); W¥,(i) = 0;}
2. Recursive computation
For 2<t<T
For 1<j <N
8(J) = max [84(1) ay] . by(oy);
1<i<N
V() = arg max(8.(i) ay);
1<i<N

3. Termination
P* = max[&.(i)];
1<i<N
q*; = arg max[3:(i)];
1<i<N
4. Backtracking Oy [0, | O3 [ 04 | O5 | Og
For t=T-1 down to 1 { g*, = Y«(q*1); }

P* gives the required state-optimized probability
I'* = (g*,95%, ..., ar*) is the optimal state sequence

INSA =5
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_aap.7| HMM: discrete versus continuous

= Different types of HMMs on the basis of the kind of symbols:

= Discrete HMMs

=« Number of possible symbols,
probability of the symbols in matrix

= quantization errors at boundaries

= relies on how well Vector Quantization
(clustering) partitions the space

= sometimes problems estimating
probabilities when unusual input
vector not seen in training

= Continuous HMMs

= Probabilities of symbols
in continuous form; distribution density

Example: the emission probability
is expressed with mixtures of Gaussians.

probability

Ir"'
S

—

crrcrrrrrf

I A AR |

53

Sequence of primitives
[Viard Gaudin]

7Yy )

creeecree e

-t it

Discrete HMM
5 clusters
[Viard Gaudin]

4

corps bosse 1

amorce hampe trait ;

INSA

feature \«'aln.;:. - [Juan 04]

INSN © eric.anquetil@irisa.fr
_cap.7| HMM: example 54
= Another explicit segmentation : example of an on-line approaches

= Discrete Emission probability
= Sequence based on primitives
/{_ 4 { , terminaison
- ligature
bosse .1
amorce F bas hampe hampe boucle
0,6 - 60 corps botucle

e .

corps bosse2

© eric.anquetil@irisa.fr




_aap.7| HMM: for Speech

= Example of using HMM for word “yes"” [john-paul Hosom 2009]

T T
[ h1zo I [

Io1 0, 05| 0,]05( 05| 0,]0¢ °29|
0.6 0.5 0.8
sil 0.4 eh 0.5 0.2

5,1(0,)°0.6'5(0,)0.6" b,(05)0.6" (0,):0.4" 5,(05)°0.3' 5,(05)0.3' 5,(0,)°0.7 ...

55
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_Chapitre 8
Dynamic Time Warping (DTW)
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_cap.s| DTW : Introduction 57

-—_—fm—,\

W
Euclidean Distance “Warped” Time Axis
Sequences are aligned “one to one”. Nonlinear alignments are possible.

Prototype

[M. Sridhar 07]

INSA
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_aap.s| DTW : Principles 58

= Principles
= Given: two sequences C: X;,Xy,...,X, and Q: yYy,Yo,++/¥Ym
= Wanted: align two sequences base on a common time-axis

optimal
S warping
path

LAY

two time series Q and C,
length n and m respectively

|:> ¢
\
/

an (n*m) matrix is constructed to
store the distance between items in

= Conditions QandC.
= Boundary conditions: We want the path not to skip a part
= Monotonicity: The alignment path does not go back in “time” index
= Continuity: The alignment path does not jump in “time” index
.. A good alignment path is unlikely to wander too far from the diagonal

the result alignment

© eric.anquetil@irisa.fr
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_aap.s| DTW : Algorithm 59

. Dynamic programming d(i,j) = distance between Q & C; - -for instance (Q; - C)?
D(i, j) = distance cumulée
Time Series C a. m) Initial condition:
) D(,1) =d(1,1)
1 I n / ]
m [ . D(L))=X,-,d(1,p) j =L..m
DY) =%’ _,d(g,1) i =L.n
DP-equation:
o b (i, - 1)
D@, j)=min | D(i-1,j-1)| +d(i])
_ . /] D(i-1,]))
o J :'3‘ Warping window: |—r<i<j+r.
4]
3 Time-normalized distance:
(%1
Q D(Q,C)=d(n,m)/c
S _
i< 1]e | c=n +m.
dT i=j+r The warping path
(1,1)
@4 (1) = (0 (1), P ()
INSN :."I‘-.K;. © eric.anquetil@irisa.fr
_aap.s| DTW : Illustration 60

= Alignment of two pairs of signals
= The matching between points of two pairs of signals

= Superimposition of the warping path (®,,) on the cumulative distances matrix D.

AN
\ //
\Y,

x() and y(j)

warping path (¢,,)

[Morel, 2017]
INSN “:‘mT' . © eric.anquetil@irisa.fr




_aaps| DTW : Pattern Recognition using KNN (without learning)

= General Principle:
= Classification: Distance-based methods
=>» K Nearest-Neighbor Classifier

Gesture to recognize

ﬁ results

l

/’/;‘*\
»| KNN algorithm »(  Clssd
Gesture samples:
One or several samples/class
INSN ;'"Im;{:" . © eric.anquetil@irisa.fr
_aaps| DTW : Pattern Recognition using KNN (without learning) 62

= Basic idea
= Similarity can be described as distance in a specific space

= We can use DTW for estimate the distance between tow sequences (gesture)
= We can use a set of feature for estimate the distance between tow sequences (gesture)

= If suitable features were selected, that means

= patterns of the same class have similar features /21/2
= patterns of different classes have dissimilar features J}»

= Need to define izz\ ﬁ‘ f{z
= A distance function d(z,y) for two arbitrary patterns x and y

INSN NPURES © eric.anquetil@irisa.fr
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_aaps| DTW : Pattern Recognition using KNN (without learning) 63

= 1 Nearest-Neighbor Classifier (1NN)
= Assumption: for each pattern class ;, 1 < i < N exactly one (representative) prototype Z; is given.
= For an unknown pattern « the following classification rule is then valid:

k=argmin{d(z, Z;)|1l i < N} = x € C}

= Task
= Assign z to the class C, to which the next neighbor Z;. in the feature space belongs
= Reject = , if no unique minimum among d(z, Z;) exists or if the existing unique minimum is too large

= Nonparametric models
= requires storing and computing with the entire data set.

SNSTITUE HATIONAL
INSN el o © eric.anquetil@irisa.fr
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_aaps| DTW : Pattern Recognition using KNN (without learning) 64

= Nearest-Neighbor Classifier
= Two pattern classes Chand C: in the two-dimensional feature space

My
YANNVAN

A A

AA Zy AA

d(ﬂ?, Zz)

INSN NPURES © eric.anquetil@irisa.fr
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_aaps| DTW : Pattern Recognition using KNN (without learning) 65

= k-Nearest-Neighbor Classifier . . m=
= Observe the m next neighbors of a pattern . .
from the sample set. * ?" . .
= Assign « to the classC'. , which occurs most . ‘ . s
frequently under all m next neighbors. e e o
= Common selection 3 <m <7 . .®
2 2
.- L » =, c e *8 . =
: e .’..' . = m = gee l!-.a [ ] P m
/
L] B L]
1 L] . . 1 » L ]
L ] c. . P ™
L] 2 L - £ L] - 'y - s
] : .. . o L 1 : -. .
A .« o° -' . :*® o &0 ." :
Cee o . S 2 .
. . - L] u‘ » -
0 i 0 oy . O
0 1 2 0 1 2
INSN ; [Christopher M. Bishop] o ercamauetionat
_aaps| DTW : Pattern Recognition using KNN (without learning) 66

= k-Nearest-Neighbor Classifier
= How to choose k
= Common selection 3 <m <7

= Define K by validation error rate

= Split the training and validation from the initial
dataset.

The training error rate: The error
rate at K=1 is always zero for

. . . the training sample T
= lot the validation error curve to get the optimal

value of K. :
= This value of K should be used for all predictions. o

—— uatdatisn g

The validation error rate

INSA':
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_aap.s| DTW : Pattern Recognition with creating models (Learning phase)

Learning phase
for each class

/

‘/\\

/ \
2

&)

Ex: Learning by
averaging

—> or

by clustering
(cf. chap. On clustering)

Model for classe 2

: ‘/
@
[ 2

™ 3

1)
© @

Gesture to recognize

i

W @ o8 l results
Generalisation > @/
phase
Gesture models:
One or several models/class
INSN LI..I..I;;' © eric.anquetil@irisa.fr
_aaps| DTW : Pattern Recognition with creating models: Offline learning 68
[Almaksour 2011]
Training phase Operation phase
Static classifier
E (xry?)
K led ‘ 3 ' i+
nol\)/ggege . : Recognition alg. [E3D)] c -
| | Expert S ﬂ 2 | | User
- —E
training S . : 4| Knowledge @ <
dataset Learning alg. : ( base W) i
! |

- Limitations

INSA':

Collecting large and exhaustive training dataset

User data can be much different from training data (different
contexts/habits/needs, time-changing, ...)

Predefined and fixed set of categories/classes (included in the training dataset)

© eric.anquetil@irisa.fr




_aap.s | DTW: Averaging of two signals to create a model 69

= First idea to average to signals
= Alignment based on the warping path @xy of length K
= Creation of two new aligned signals xK (k) and yK(k) with the same length K

= XK (K) = x(pxxy (K)) yK (k) = y(@yxy (k))
g Vo !/ \\\
s WA A
\‘__/ \ / \a/f
(1) and y(j)
N / \\\\
X\
A "r... —% x«(k) and y«(k) with the same length K
. \‘\ ’,---J' —x => result from the resampling of signals x(i) and y(j)

il \/ relatively to . (k)
/\/\/f\ =>» average signal is u(k) (in black).

1111 — On drawback: the average signal is longer
\V than the two original signals

SNSTITUE HATIONAL
INSN el o © eric.anquetil@irisa.fr
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_aaps| DTW: Averaging of more than two time-series 70

= DTW Barycenter Averaging (DBA) /Petitjean et al. in 2011]
= A global averaging method for dynamic time warping.

= A fast algorithm that insures that the average signal will have a
reasonable length.

= The main steps of the algorithms:

= 1/ Randomly choose a signal x,(k) from the dataset to initialize the
average signal:

u(k) = xy(k), k=1, .., M, where M, is the length of x,(k).

= 2/ Iterate IT times the following steps:
= (@) Align all signals x(k) on u(k) and compute warping paths ¢,

= (b) Update every point of the average signal u(k) as the
barycenter of points associated to it during step (a).

INSN NPURES © eric.anquetil@irisa.fr
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_aap.s| DTW: Barycenter Averaging Algorithm (DBA) 7

Algorithm 1 DBA : averagingDT W

Require: xo(k) of length Mo, (xi(k))i=1..L of lengths M, IT
K= Mo, u(k) — xo(k), k=1,.. K
for it € 1...IT do
assocTablk]=0,k=1..K
forl € 1...L do
Puxg — DTW(u, x2)
p — length(@ux)

whilep>1do // /\ /

[Petitjean et al. in 2011]
[Morel et al. in 2017]

(k, ) — Qux (p)

— (k)
assocT ab[k] — assocT ab[k] U {xi(n)} —x, (k)
p—p-1 —x,(K)
end while
end for

for kcl1l..K do

U(k) — mean(assocT ab[k])
end for

end for
return u(k), k=1,...,K

© eric.anquetil@irisa.fr

_aws| DTW : learning category-specific deformations ...

72

= Problematic

[UCHIDA 2005, MOREL 2017]
= Misrecognitions due to overfitting

= Idea
= To category specific
deformations, called eigen- _
deformations, to suppress —— reference : 5(c=8)
misrecognitions due to overfittng T

-
== reference : 9(c=19)
=== jnput ;9

Do =0.789 < D =0.844

© eric.anquetil@irisa.fr




_aapns| DTW : learning category-specific deformations ...

= Some results
= Estimating deformation tendencies

= Optimization based on DTW: learning geometric

73

[UCHIDA 2005]

. . a
distortions from several examples of the same (@)
symbol [UCHIDA 2005]
L —
- reference : 7(c=12) - reference : 1(c=2)
= NB: Malahanobis Distance ""D"”’”' ! - "D'“”“' i
. . . =0.858 =0.889
= Euclidean distance can be re-written as a dot- e amal e e
product operation Degen=0.716 >
dp (6, y) = (x=y)T(x=y)
= Mahalanobis distance between two vectors, x and (b)
y, where S is the covariance matrix.
. _-— relereur‘: -. 5{c=8) ——-— relerence : 9(c=19)
dM(x, y) = ‘/(x —y)TS‘l(x _y} == input 9 == nput :9
‘ Do =0789 < Do =0.844
ot X2 P =0427 P =0.198
Dugon=0.626 > Duygon = 0.553
INSN © eric.anquetil@irisa.fr
_aaps| DTW : For Gesture Analysis
= DTW can also be used for fine gesture analysis (virtual sportive coachingy
/2\ \ Model for classe 2
Learning phase | N4
for each class Samol ) 1/ N
Ampres ... »| Ex: Learning by | | v Jf’/z )\
averaging \_/
A class 2 Gesture to analyse results
j ////A\\\\\
4 P Quality of the ‘
& l gesture
Gesture Gesture alignment /" Fine feedback of
analysis phase by DTW the user errors
Gesture model e
of the analysis class

INSA
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_cap.s| DTW : a parallel with Edit distance computation 7

. Entrée:
= L_evenShtem X = x179...1, : une chaine de caractéres
distance Y = y1y9...4, : une chaine de caractéres
« Insertion d : une Itne_ttrice de taille |X| + 1 x |Y| + 1 permettant de stocker les résultats
intermédiaires
= Deletion » nage — nuage

Initialisation d(0,0) =0

= Substitution Pour i de 1 & n Faire

nuage — nage

- d(i,0) = d(i —1,0) + 1 nhage  — page
Fin Pour
Pour j de 1 & m Faire
= Extension -d(0,7) =d(0,j — 1) +1
FUSi Fin Pour
= Fusion Pour i de 1 & n Faire _clé —  dé Az
= Division Pour j de 1 & m Faire aib . aile th/fC
. Si x; = y; Alors . . , 7/, o
= Pair Cd(i, ) = d(i — 1,5 —1) méanche — méandre I}M2onche
substitution Sinon
d(i—1,7—1) + 1 Cot substitution
d(i,j) = min{ d(i—1,7) + 1 Colt suppression
d(i,j—1) 4+ 1 Colt insertion
Fin Si
Fin Pour
Fin Pour
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_Chapitre 9

Pre-segmented Action Recognition: Skeleton based
and “Statistical” approaches

76




_aap.o | Segmented pattern representation 77

* A pattern refers to either a whole body action or dynamic hand gesture

Middle  pndex

IS

* The overall process for segmented pattern representation and recognition is:

Amorphological
trajectories »

Raw » Segmented »
trajectories pattern

reprentation

Overlapping
» segments

‘ I\-‘:H:I.I Il.ﬁ!KIIIN
I“sA b © eric.anquetil@irisa.fr
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_aap.o | Skeleton based Action Recognition based on 3D gesture trajectories

= Addressing 3D action recognition in light of 2D representation

= 3D gesture trajectories may be processed similarly to hand-drawn trajectories
= Same data type (trajectories or signal)

= Graphonomic characteristic:
= a human is the performer
= Well-established 2D experience

t+1 142 t+3

© eric.anquetil@irisa.fr




_aap.o | Pre-segmented Action Recognition (Skeleton based) 7

= Pre-segmented Action Recognition:
Skeleton based and « statistical » approaches (using SVM)

= Example of two approaches [Boulahia 2017]:

= A first naive approach: "

=« 3DMM : 3D Multistroke Mapping 1 (/$
3D Multistroke Mapping (3DMM): Transfer of hand-drawn pattern L 2
representation for skeleton-based gesture recognition. In 12th IEEE >
International Conference on Automatic Face & Gesture Recognition (FG /f/\
2017), 2017. of e

= A more robust approach:

« HIF3D: Handwriting-Inspired Features for 3D action recognition
HIF3D: Handwriting-Inspired Features for 3D skeleton-based action

recognition. In 23rd IEEE International Conference on Pattern Recognition
(ICPR), 2016.

© eric.anquetil@irisa.fr

_aap.o | Action representation by 3DMM: Kinect based patterns: whole body actions 80

= The overall process for segmented action representation and recognition is:

Segmented
pattern » » Class label
reprentation

3DMM
Features

.
S

Overlapping
segments

Raw » » Amorphological
trajectories trajectories » »

-Run
-Shoot
-Joggle

X

Z
(b)

© eric.anquetil@irisa.fr




_aap.o | Action representation by 3DMM - Segmented pattern recognition: synthesis 81

= Step 1: Pre-processing
= Goal: address the morphological variability issue

= How: perform a normalisation of the raw trajectories according to
the subject morphology

= Step 2: Temporal split
= Goal: address the morphological sequencing issue (for instance if
two arms are raised at the same time or one after another, the
model should distinguish these two different patterns)
= How: Extract partial segments from the whole pattern according to
overlapping sliding winodws

© eric.anquetil@irisa.fr
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_aap.o | Action representation by 3DMM - Segmented pattern recognition: synthesis 82

= Step 3: Features extraction
= Goal: build the pattern representation that should get the spatial
relationship between trajectories and the overall shape of the
produced pattern
= How: It consists in extracting a set of features on the whole pattern
and on the overlapping segments produced in step 2

= Step 4: Classification
= Goal: get the class label

A
= How: using a classifier (here SVM or MLP) trained on a training G aa
set and then applied on each testing pattern

X2

X1

Activation degree

BeSIITT WA IONAL
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_aap.o | Action representation by 3DMM: Step 1 - Pre-processing

= Addressing morphological variability before trajectory extraction

0 seconds 2.41seconds  3.69 seconds 4.82 seconds
- 80, 180,

L Rght ot
gt wiist
Elbow o,

(@) )

[Kulpa 2005] "Morphology-independent representation of motions for interactive human-ilike
animation”, 2005.

LSTITUT MATIOHAL
INSN NPOBHTS © eric.anquetil@irisa.fr
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_aap.o | Action representation by 3DMM: Step 2 - temporal hierarchy 84

= Modelling temporal information: Temporal Split Extraction

= Handling temporal sequencing

= Features are extracted according to two temporal levels (Level = 2)
= Number of features:

= Without selection : 4x49x3=588

= With selection: between 400 and 80

t=1 t=T

INSN NPURES © eric.anquetil@irisa.fr
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_aap.o | Action representation by 3DMM: Step 3 - : dealing with the set of 2D trajectories

= A first naive approach 3DMM using direct 2D projection [Boulahia 2016]

= Several strategies to consider all the trajectories
= (@) Mono-Stroke approach
= We loss the spatial dependencies
= (b) Multi-strokes approach
= Modelling spatial relationship

e

(a) (b)

© eric.anquetil@irisa.fr
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_aap.o | Action representation by 3DMM: Step 3 - Direct 2D features extraction

m [Delaye and Anquetil] “HBF49 feature set: A first unified baseline for online symbol recognition”, 2013.

=
zi Q______
(b}
a a b
5 ‘—' ( ) H
Bl o B ;
\/ a 1o
______________ i N
Figure: Descripteurs dynamiques Figure: Descripteurs statiques
(positions de départ, longueur des (histogramme 2D, boite
strokes, inflexion) englobante)

© eric.anquetil@irisa.fr
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_aap.o | Action representation by 3DMM: Step 4 — statistical Learning and classification

= Classification

Feature
extraction

Classification

Classification
Use a feature vector
to assign the object to a category (class)

Feature extraction
Discriminative features

Here, 2 dimensions Feature space Here, discrimination of 3 classes: “a”, “f", "x"

Feature 1
X
-
o .
Q 0 p > e
% K6 4y oo
C . ]
o 2 ¥ 3 A+J}f“f,f7;&< e > o o
a,ﬁ gf’ﬂ i ) X x
e 0 1.F0f 7 = 7
,}3 a , s ﬂ,a’ e - ac e
ad Q- Q agdd, " . o —
o /(/; mlﬂv OM'\/" XW
a a ¢ *xjr g = = =
A aq = x4 X Pa 5 e,
*a aa ™ A P P
[ x
,_L(KO‘ X : v \L
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_aap.o | Action representation by 3DMM: Step 4 — statistical Learning and classification

Feature
extraction

= Learning Classification

= Finding all the parameters
of a classifier based on
a training set.

Learning

= Supervised learning: Generalization

= For the learning, a teacher provides
a category/class label for
each pattern in the training set

= Unsupervised learning: Clustering
= The system forms clusters or “natural groupings” of the input patterns

P
& Xy

Danra Feature space Clusters of similar feaiure vector

INSA':
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_aap.o | Action representation by 3DMM: Step 4 — statistical Learning and classification &

= Learning and generalization capacities
= Learning

= consists of presenting an input pattern and modifying the network parameters (weights) to reduce
distances between the computed output and the desired output

—

Features /

0000

classes

Input data base Classifieur
= Generalization / Feedforward
= consists of presenting a pattern to the input units

and passing the signals through the network
in order to get outputs units

55 1 s o S, — output

st NATIONAL
I“sm ooy g © eric.anquetil@irisa.fr
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_aap.o | Action representation by 3DMM: Step 4 — statistical Learning and classification <

= Learning: Number of features :
= For each temporal windows: 49 features [HBF 49] x 3 projections = 147 P Y, @
=

= 4 temporal windows: the total length of features (
588 (147X1 + 147X 3). ,
= Feature selection: s Pl
= To limit redundancy
between 400 and 80 I L }
t=1 1=T
I_I_l
9 —
Features / -
O
O
e ]
classes
Input data base Classifieur

st NATIONAL
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_aap.o | Action representation by 3DMM: Some results on the HDMO5 dataset

= HDMO5 dataset

= HDMOS is an optical marker-based dataset

M. Muller, T. Réder, M. Clausen, B. Eberhardt, B. Krliger, A. Weber: Documentation Mocap Database HDMO5.
Technical report, No. CG-2007-2, ISSN 1610-8892, Universitat Bonn, June 2007.

= Contains around 100 motion classes including

= various walking and kicking motions, cartwheels, jumping jacks, grabbing and depositing motions,
squatting motions and so on.

= Each motion class contains 10 to 50 different instances of the same type of motion

= Experimental Protocol
= Evaluation with 11 motion actions.

= The actions are performed by 5 subjects, while each subject performs each action a couple of times ;
= this suggests a set of 249 sequences. )
/ >

.'
i i _'1 I
= Testing protocol / », A |
= 3 subjects for learning (142 instances) l ﬁ T d ?S Hﬁg‘?;)
= 2 subjects for testing (109 instances) WL (i

= cross-subjects validation

SNSTITT ik
INSN el o © eric.anquetil@irisa.fr
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_aap.o | Evaluation / Validation: Cross-Validation 92

= Cross-Validation: K-fold
= Successively setting apart a block of data (instead of a single observation)

Data

Al

LI

Jest set Test set Test set/ Test set
Y

/

Training set

INSN NPURES © eric.anquetil@irisa.fr
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_aap.o | SOme results of 3DMM approach on the HDMO5 dataset

= Results (HDMO5 dataset)

Method Authors & Year #Features Reco. rate (%)
Dynamic Time Warping [Reyes et al., 2011] - 82.08
MUJA/MIRM + LCSS [Pazhoumand-Dar et al., 2015] - 85.23
SMIJ + Nearest neighbour Ofli et al., 2014 - 91.53
LDS + SVM [Chaudhry et al., 2013] - 91.74
Skeletal Quads + SVM [Evangelidis et al., 2014] 9360 93.89
Cov3DJ + SVM [Hussein et al., 2013] 43710 95.41
BIPOD + SVM [Zhang and Parker, 2015] - 96.70
HOD + SVM [Gowayyed et al., 2013] 1116 97.27
3DMM + SVM + Level = 1 100 91.74
3DMM + MLP + Level = 1 20 92.66
3DMM + SVM + Level = 2 400 94.49
3DMM + MLP + Level = 2 80 94.49

Table: Compatisons between 3DMM approach, with and without
temporal split, and previous approaches on the HDMO05 dataset.

INSA i
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_aap.o | Pre-segmented Action Recognition (Skeleton based) o4

= Pre-segmented Action Recognition:
Skeleton based and « statistical » approaches (using SVM)

= Example of two approaches [Boulahia 2017]:

= A more robust approach:

= HIF3D: Handwriting-Inspired Features for 3D action
recognition
HIF3D: Handwriting-Inspired Features for 3D skeleton-based action

recognition. In 23rd IEEE International Conference on Pattern
Recognition (ICPR), 2016.

© eric.anquetil@irisa.fr
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_aap.o | Action representation by HIF 3D: 3D features inspired by 2D features %

= The overall process for segmented dynamic hand gesture recognition:

Raw Amorphological Overlapping Segmented
trajectories » » trajectories » » segments

pattern Class label
reprentation
HIF3D
i T b | ) Features -Zoom
ik msue i ( ¥ s —Shgke
poty M A & . Lo \\( \r X/ \“‘" X/ B s b, -Swing
N : 1 e : : : o \
.. BB ..T:mmb Subsequence? | e | Sub-sequence 4 ki N &5 B \r Sarid
28 ] ‘ . "l—T.n | 24— End S Ena 3 *
1 Level 2 1( Start_6
Ty \r\r\/\ \/
© eric.anquetil@irisa.fr
_aapo | Action representation by HIF 3D: 3D features inspired by 2D features %

= Overview of the features

= A new feature-set inspired by an efficient hand-drawn descriptor
but entirely dedicated to the 3D skeleton trajectories

« HIF3D: Handwriting-Inspired Features for 3D skeleton-based action recognition. [Boulahia, ICPR 2016].

= Extending HBF49 to form HIF3D so as to process directly 3D trajectories instead of projecting
= Better capturing the correlation between joint trajectories
= Reducing dimensionality and avoiding redundancy

= Adding new features (such as volume related features) which are more adapted to 3D patterns

= A set of 89 features (very compact comparing to existing feature-set)
= 41 Extended features, i.e. features which can directly be extended from 2D trajectory to 3D one.

= 48 Newly features, i.e. carry the characteristic information identified for handwritten pattern but have
different formulations since the original 2D formulas can not be directly applied for the 3D case.

© eric.anquetil@irisa.fr




_aap.o | Action representation by HIF 3D: 3D features inspired by 2D features 97

= Extended features:

« Starting points: = %= ¢ % g B - e % -5 ;"z e 1
h: height

= X1, y1 and z1 are the coordinates of the first point of the pattern
= CX, ¢y and cz are the coordinates of the the center of the bounding box B
= | is the greatest side of the bounding box B
= The bounding box B is the cuboid that enclose the pattern

. - o ’ d: depth

V. Uy . ‘-'J.Tt.y v.au

= First point to last point vector:  f; = ||7]], fs

=TE fy=T2Y, fig= =
T | T R T

= V is the vector that relates the first and the last point of the pattern

w: width

= Bounding box diagonal angles: fy; = arctan (E) fy; = arctan (E) fy3 — arctan (3)
w h d
=« h, wand d are the height, the width and the depth of the bounding box
B, respectively.

INSA':
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_aapo | Action representation by HIF 3D: 3D features inspired by 2D features %

a
= Newly features: ?.\, .

= 3D zoning histogram: .
» Histograms are built by computing a fuzzy weighted contribution from each point si L/ ;

= We define a regular 3D partition of the bounding box B into 3 x3 x 3 voxels

resulting in twenty-seven zoning features
to its eight neighbouring voxels, where the weights are proportional to the distance .

from the point to the voxels center cj,k,| .

1 n 1 n
fsg = " ;ﬂ-m(b'i), By = H ;Il:;:;:x(-‘ii) » ol
. 7 A
= With 0 < p jki(si) < 1 is the contribution of point si to the voxel with center c j,k,| for ) A \
each1<jkl<3 A | i h: height
~ =i / !
= Convex Hull features: - . %
= To capture the overall shape produced during the gesture we consider the convex Hex ey
hull H of the resulting pattern S T / 7/
= We first compute its convex hull volume VH. T | g b
= Then we extract the normalized volume and the compactness as two additional U N et
features CENSRE | R |
; V} ’ ; L3 d: depth
—— 7, 9 —_— — .
8= Weh+d 8 Vu
w: width

= L is the total length of the pattern and w, h and d are the height, the width and the
depth of the bounding box B, respectively

INSA':
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_aap.o | SOme results of HIF3D approach on the HDMO5 dataset

= Experimental Protocol : 3 subjects for learning (142 instances) + 2 subjects for testing
(109 instances)

Method Authors & Year #Features Reco. rate (%)

Dynamic Time Warping [Reyes et al., 2011] - 82.08

MIJA/MIRM + LCSS [Pazhoumand-Dar et al., 2015] - 85.23

SMIJ + Nearest neighbour Ofli et al., 2014 - 91.53 h)
LDS + SVM [Chaudhry et al., 2013] - 91.74 AN

Skeletal Quads + SVM [Evangelidis et al., 2014] 9360 93.89 Lﬁ\ WW ! %ﬁ&?})
Cov3DJ + SVM [Hussein et al., 2013] 43710 95.41

BIPOD + SVM [Zhang and Parker, 2015] - 96.70

HOD + SVM [Gowayyed et al., 2013] 1116 97.27

3DMM + SVM + Level = 2 400 94.49

HIF3D + SVM + Level = 2 356 98.17

Table: Compatisons between HIF3D approach, with
temporal split, and previous approaches on the
HDMO5 dataset.
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_xwo | 2D and 3D Action/Gesture recognition: a challenge ?

< Gesture recognition in real-time streaming (non segmented)
= Overview of the task: recognizing in real-time streaming
= Non-segmented Action Recognition: Example of one approaches [Boulahia 2017]
= Presentation of experimental results using Kinect and Leap Motion

K3
o

Early Gesture recognition

101

_aap.10 | GeSture recognition in real-time streaming (non segmented): overview 102

= The challenges that should be addressed are:
= Temporal variability: that occurs when subjects perform gestures with different speeds.*

= Inter-class spatial variability: which refers to disparities between the displacement amounts induced by
different classes (i.e. long vs. short movements).

= Intra-class spatial variability: caused by differences in style and gesture amplitude.

Curvilinear 4

displacement ! A i
’ ! || s /: - =\
Al AN
4 1 1 v
] 11
\ \ ] [ RN S
N/ o
\ 1 SO Sy
N4 -
Class Ci Class Cj
Same shapes and
different displacements
A/

Y

Different shapes and different displacements

INSA':
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_oap.10 | Gesture recognition in real-time streaming (non segmented): overview 103

» Temporal > Inter-class spatial > Intra-class spatial

variability variability variability
. , o 1 3
% / > Curvilinear Curvilinear based
1 , . segmentation classifiers
| " '
4

Curvilinear

o Decision
Cla?:s;.ﬁﬁ Flow 1

T — Final
N Decision ‘ Decision
.< C]asg;.ﬁer - Flow i >_ @ Flow

2 Curvilinear .
8 ifi - Decision
’ . Cn .

4 7 . J
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_aap.10 | Gesture recognition in real-time streaming (non segmented): step 1 104

= Step 1: curvilinear segmentation

= Dynamically defining windows depending on the amount of information (i.e. motion) available in the
unsegmented flow.

= The metric used to measure the amount of information is the curvilinear displacement of joints.

= function CuDi(FS,FE) that computes the curvilinear displacement
for a given motion segment, starting at frame FS and ending at FE, as follows:
i=Fy
CuDi(Fs,Fg)= » d [Curvitmear window | ™
i=Fg

= Where df""’ is the instantaneous average displacement | it coced

Instancec 2
T.ow speed

= Curvilinear window as being a sliding window N~

= Whose size is continuously updated such that it encompasses, at each frame, a specific curvilinear
displacement.

INSA
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aap.10 | Gesture recognition in real-time streaming (non segmented): step1

= Step 1: curvilinear segmentation

| Temporal sliding window I

Instance 1
High speed Current
R frame
Instance 2 g
Low speed
5 ° _/
/ | Curvilinear window | \
Frames
Instance 1
High speed Current
frame

Instance 2
Low speed

1
= A< ~
B Y
E 13 H
0y i !
A _" 4 e
\ S

Illustration of the difference between the curvilinear window
and the usual temporal sliding window.

INSA':
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» Temporal
variability

{ Curvilinear ;.l
“~_segmentation -
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= Step 2: curvilinear-based classifiers
= To address the second issue, inter-class spatial variability, we

propose to use as many classifiers as there are curvilinear

displacements.

= Each classifier Ci is trained to recognize all action classes but
according to the curvilinear size of classe Gi

= We constitute the training set of a classifier Ci by extracting
local features (HIF3D) according to its corresponding

curvilinear window.

= SVM classifiers are then trained on each training set

INSA':

aap.10 | Gesture recognition in real-time streaming (non segmented): step 2
» Inter-class spatial

106

variability

2
Curvilinear based
classifiers

RS
e
=

Cn

Dec:swu
Flow1

Decmon
Flowi

Decision
Flow n
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_aap.10 | Gesture recognition in real-time streaming (non segmented): step 3 107

= Step 3: Decision process (at each frame)
= The fusion system is mainly composed of:
= as many local histograms as there are classifiers && a global histogram

» Inter-class spatial » ].ntra—c!ass. s‘patial
variability variability

N
@“ inear hased o @e@)
= CLASSES

classﬂ'ers
HGl WG2 WMG3

12

Dec:smn {
‘ m"“'ﬁ“ ‘-m e L P e

-7
—
<

™ wy
- = 8
o
&
; . - Final
Curvilinear — = 2 6
Decision o ])u'lshn w [a] .
-5 [ OFE oo = . |-
G 2
2 e B
2 (AN}
= o D
- ~ 1
Decision - 1 [N ]
: om [HRR| Wl
fis c1 c2 3
p . -
I [llustration of the global histogram functioning at frame i with
three classifiers which can G1, G2 or G3
INS” © eric.anquetil@irisa.fr

_aap.10 | Gesture recognition in real-time streaming (non segmented): step 3 108

= Step 3: Decision process
= Each local histogram has as many entries as there are
classes to predict.

=« It is used to cumulate (at each frame) the score of .. JHisi(j) + B, if j= Predicted-i
each class predicted by the associated classifier Ci. Hisi(j) = His{(j) —y. otherwise

= Then, at each instant, each local histogram is updated
= the jih entry of a histogram His; associated with classifier (i is

updated at each instant:

= B equals to the difference between
the score of the currently predicted class, i.e. Predicted_i, 4

5
2 ~
and the score of the secondly ranked predicted class by 3: . :

3 ~

23 H ~N 2 .
5 1 <
1 l

0,5
v]

the classifier (i.
= Y corresponds to the difference between

FRAME 4 FRAME 5 FRAME 6 FRAME 7
PREDICTED: Gl =) G2 = Gl == G1

CLASSES
EGl "G2 mG3

“’1

-

the score of Predicted_i

and that of jih class corresponding to the jih entry of the
histogram.

CUMULATED SCORES

Ilustration of a local histogram functioning with
three classes at frames 4, 5, 6 and 7
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_aap.0 | Gesture recognition in real-time streaming (non segmented): step 3 109

= Step 3: Decision process

= Then, at each instant, each local histogram is used to update

the global histogram.

Gi , if 1 1<ig<n &
His Global(i) 26 &
Ouipuii = Gi

. . . s . .. Output = Gj , if 3 1<i#j<n &
= This latter is responsible for emitting the final decision. His Global() > ¢ &
= At each decision, all histograms are reinitialized to zeros, as Outputi = Gj
are the cumulated curvilinear displacements for each classifier. ? otherwise
CLASSES
CLASSES HG1 mG2 MG3
EGl "G2 mG3 12 F

5 rr[ 10 FIETES) S| (e S ——
w45
= 4 - i1
235 o i
o3 ~ c.LF:
g 25 ]] ~ ~ i @ 6 o .
% 2 = o 5 ‘S
215 1 - g 4
21 l. 3 i
Yo5 2 (] A

1] =] i : D

FRAME 4 FRAME 5 FRAME 6 FRAME 7 0 '—I. = sl .
PREDICTED: Gl = G2 == Gl = G1 c cz c3

Illustration of a local histogram functioning with

three classes at frames 4, 5, 6 and 7
INSA i

[llustration of the global histogram functioning at
frame 7 with three classifiers which can G1, G2 or G3
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_aap.11 | Gesture recognition in real-time streaming (non segmented): MSRC-12 Dataset 1

= DataSet: MSRC-12 dataset

= The Microsoft Research Cambridge-12 dataset
(MSRC-12): sequences of skeleton data,
represented as 20 joint locations.

S. Fothergill, H. Mentis, P. Kohli, S. Nowozin,
Instructing people for training gestural
interactive systems, in: Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems, ACM, pp. 1737-1746.

» 12 gestures performed by 30 subjects

= 594 sequences (about 50 sequences per
class)

= a single gesture is performed several times
along a sequence.

= Participants were provided with 5 instruction
modalities including:

= images, text, video, images + text, and video
+ text.

= The dataset is annotated with action points

= a pose within the ?esture that clearly
identifies its completion.

INSA :
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[Xi Chen, Markus Koskela 2015]
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= Protocol (MSRC-12 dataset )
= According to the leave-subjects-out protocol.

= Mean F...and its standard deviation is reported for each instruction modality.

= Other approaches
= ELS = Efficient Linear Search;
= RF = Random Forests;
= RTMS = Real-Time Multi-Scale;
= SSS =Structured Streaming Skeleton.
= CuDi3D [Boulahia 2017]

’L:n'ru'i . 2

Precision = Recall

* — —
Precision + Recall

| [ ELS[12] | RF[3] | RIMS[II] | SSS[4] ELS[13] | CuDi3D |
Video - Text | 0.645 £ 0.149 | 0.679 £0.035 | 0.713 = 0.105 | 0.707 £ 0.170 | 0.790 + 0.133 || 0.848 + 0.060
Tmages - Text | 0.581 = 0.134 | 0.563 0.045 | 0.656 +0.122 | 0.730 = 0.148 | 0.711 +0.228 || 0.744 = 0.072
Text 0.437 £0.170 | 0.479 +0.104 | 0.521 = 0.072 | 0.713 = 0.191 | 0.622 = 0.246 || 0.695 + 0.080
Video 0.580 + 0.189 | 0.627 +0.052 | 0.635 = 0.075 | 0.557 +0.291 | 0.726 = 0.225 || 0.816 + 0.060
Images | 0.497 +0.122 | 0.549 = 0.102 | 0.596 + 0.103 | 0.666 + 0.194 | 0.670 + 0.254 || 0.719 = 0.087

[ Overall 0.548 0.579 0624 | 0675 0.704 0.764 ||

INSA :
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_aep.1n | Evaluation measure 113
= Evaluation measure Desired Positive Desired Negative

Positive N, True Positive Né‘ False Positive N?

Test Outcome
Negative N, | False negative NER True Negative NRR

= Recognition/Error Rates

= TAR: True Acceptance Rate \Fy

= FAR: False Acceptance Rate FAR = N

R
= Accuracy Rates (“fiabilité”) _ N2 +NE
= Global performance point of view Accuracy = ——F
Ng + Ny

= recall (“rappel”)

information retrieval = the number of relevant documents retrieved by a
search / the total number of existing relevant documents ‘Recall = TAR ‘

= Precision (“précision”) A
the number of items correctly labeled ethe positive class / Precision = ——&
the total number of elements labeled e the positive class NQ + NI:‘

information retrieval = number of relevant documents retrieved by a search
divided by the total number of documents retrieved by that search

= The F-Score (or F Measure) conveys the balance between the precision and . 5, Precision x Recall
the recall. B Gg

" Precision + Recall
INSA':
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= DHG DATASET: Dynamic Hand Gesture

= DHG is a recent dynamic hand gesture dataset

» [De Smedt 2016] Quentin De Smedt, Hazem Wannous, and Jean-Philippe Vandeborre. Skeleton-based dynamic hand gesture
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1-9, 2016.

= 14 pre-segmented hand gestures
= performed in two ways: using one finger and the whole hand.
= Each gesture is performed between 1 and 10 times by 28 participants

= in 2 ways (one finger / the whole hand)

= resulting in 2800 instances.
Two different hand shapes using (a) one "'-'799-’ or

= Each frame of sequences contains
= a depth image
(b) the whole hand .anquetil@irisa.fr

= the coordinates of 22 joints both in the 2D depth image space

2
and in the 3D world space forming a full hand skeleton.

The full skeleton returned by the intel Real Sense
Inte! Real Sense Depth camera

INSA:




_aap.11 | Gesture recognition in real-time streaming / segmented: (DHG) dataset 115

= DHG: Segmented Gesture recognition in real-time streaming
= COMPARISON BETWEEN

= [Boulahia 2017] HIF 3D APPROACH
= AND PREVIOUS APPROACHES

= CONSIDERING 14 AND 28 GESTURES ON DHG* DATASET

Method 14 gestures (%) | 28 gestures (%)

HoWR [3] 35.61 -

SoClJ [3] 63.29 -

HoHD [3] 67.64 -
Oreifej and Liu [12, 14] 78.53 74.03
Devanne et al. [5, 14] 79.61 62.00

SoCJ + HoHD [3] 82.29 -
Guerry et al. [14] 82.90 71.90
SoCJ + HoHD + HoWR [3] 83.07 80.00
Ohn-Bar and Trivedi [11, 14] 83.85 76.53
De Smedt et al. [3, 14] 88.24 81.90
Our 90.48 80.48

[SHREC 2017] Results of the SHREC 2017 challenge on dynamic hand gesture recognition
[Boulahia,IPTA 2017] Dynamic hand gesture recognition based on 3D pattern assembled trajectories. In 7th
IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA 2017).

© eric.anquetil@irisa.fr
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= CONFUSION MATRIX USING 14 GESTURES OF DHG DATASET

GEl&] 34 00 52 17 00 00 00 00 17 00 00 00 00
E 15 [xK] 16 98 16 33 00 00 00 49 00 00 33 00

P 18 1.8 00 00 00 00 18 00 00 00 00 00
R-CW|13.7 2.0 0.0 20 00 00 00 00 00 00 00
R-CCW 1.8 18 00 55 00 00 00 00 00 00 00
T34 00 00 00 00 0.0

SR 00 00 00 00 16 0.0
SL{00 00 00 19 37 0.0
SU 00 15 11.8 00 00 0.0
SD 00 16 00 98 00 0.0
S-X 00 00 00 00 00 0.0
SV 00 00 00 00 00 0.0
S+ 00 00 00 00 00 00 00 00 EEE] oo
Sh/ 00 00 27 00 00 00 00 00 00 00 00 00 00

o < 7 @Ci@ S SV R R N
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_aap.11 | Gesture recognition in real-time streaming / NON-segmented: (LMDHG) dataset 17

= Weaknesses of existing dynamic hand gesture datasets:
= Composed of very short clips (around 30 frames)
= Gestures are performed with a single hand
= Perfectly denoised, with almost no missing motion segments
= Composed of pre-segmenetd gestures only

= LMDHG dataset:
= A leapMotion (NON-) Segmented DataSet

Middie
5

&

sTee -

Pinky
7
’ L]
°
°
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= LMDHG dataset: A leapMotion DataSet [\e by T
= Composed of 50 unsegmented sequences of gestures performed '\\ ,J“\
with either one hand or both hands by 21 participants ‘ ;f'

= Each sequence contains 13 * 1 class gestures leading to a total of
608 gesture instances

= Order of class in each sequence is aleatory
= Each frame contains the 3D coordinates of 46 joints

= Ground truth Start/End along with the class labels are provided Gesture FHands | tag name
= LMDHG dataset contains noisy and incomplete gestures. Point to 1 HG1
Catch 1 HG2
g M0 . Shake with two hands 2 HG3
& 2 4 Catch with two hands 2 HG4
7 @ - Shake down 1 HG5
RER B . Shake 1 HG6
RRRE s Draw C 1 HG7
———— AR A Point to with two hands 2 HG8
1 Y Zoom 2 HGY
. Scroll 1 HG10
'::?, Draw Line 1 HGI11
; Slice 1 HG12
Rotate 1 HG13

© eric.anquetil@irisa.fr
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_aap.11 | Gesture recognition in real-time streaming / Segmented: (LMDHG) dataset 119

= CONFUSION MATRIX ON THE COLLECTED LMDHG DATASET
= [Boulahia,IPTA 2017] Dynamic hand gesture recognition based on 3D pattern assembled

trajectories. In 7th IEEE International Conference on Image Processing Theory, Tools and
Applications (IPTA 2017).

HG1
HG2

00 00 00O 00 00 00O 00 00 00 00

. 1 o
= Protocol: train on 70% of the sequences, PN 00 00 00 00 00 00 00 00

» Train i.e. sequences from 1 to 35 HG3 0.0 00 00 00 00 00 00 00 74
= Test on the remaining 15 sequences. HG4 00 67 00 00 00 00 67 00 00 00 00
= Overall score: HG5 00 67 00 00 00 00 00 00 200 67
« Segmented : 84.78% HG6 00 00 00 00 00 00 00 74 00 7.1

HG7 00 0.0 67 00 0.0 00 00 00 00 0.0
HG8 00 00 00 00 00 00 00 0.0
HG9 00 00 00 00 00 00 83 00 8.3
HG10/ 00 00 00 00 00 00 00 00 7.1
HG11) 00 67 67 00 00 00 00 00 0.0

HG12) 00 67 00 00 00 00 00 00 6.7 0.0 EiHg
HG13| 00 00 67 00 67 00 00 00 00 00 00 0.0 g
HG1 HG2 HG3 HG4 HG5 HG6 HG7 HG8 HGY9 HG10 HG11 HG12 HG13

INSA':
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_aap.11 | Gesture recognition in real-time streaming / NON-segmented: (LMDHG) dataset 1o

= Experimental results on LMDHG dataset : Unsegmented gestures

= BaseLine with a basic approach
= A sliding window approach in which the window size equals to the average of training instances

= Protocol

=« train on 70% of the sequences, i.e. sequences from 1 to 35
=« test on the remaining 15 sequences.

= For evaluating this basic approach with unsegmented sequences, we use the Fscore :

= Overall Fscore: 54.11%

Precision = Recall
F score — 2%

Precision + Recall

INI’ m e © eric.anquetil@irisa.fr
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_Chapitre 12

Early Recognition

121

_xw | 2D and 3D Action/Gesture recognition: a challenge ?

2
”n

2
”g

o

» Early Gesture recognition

122




_aap.12 | Gesture Early Recognition: Introduction 123

= One possible Goal for Early recognition:
= To merge Direct and Indirect interactions into a same interface
= We have to distinguish gesture in the very beginning part

Real time Posterior
. feedback feedback
P 0 e
Direct | / Indirect
manipulation command

= One Solution:
= a reject option based multi-classifier system
» for handwritten gesture early recognition [Zhaoxin 2016]

SNSTITUE HATIONAL
INSN el o © eric.anquetil@irisa.fr
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_aap.12 | Gesture Early Recognition: Difficulties for Recognition 124

= Goal: recognize the gesture
= from their early part
= instead of waiting until the end of them. Gesture A

Gesture B
Common part

= Difficulties
= to deal with the common beginning part ambiguity

= The proportion of the earliness is unpredictable

= (@) A normalized gesture as a template.
= (b) (¢) In a size free context.

Gesture C

Common part

INSN NPURES © eric.anquetil@irisa.fr
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_aap.12 | Gesture Early Recognition: A multi-classifier early recognition system 125

= During the training, each classifier dedicates to different part of gestures

(short, medium, long)

hy

Classifier

—> Triangle / Circle

A

Classifier

— Triangle / Circle

NG

Classifier

—> Triangle / Circle

© eric.anquetil@irisa.fr

_aap.12 | Gesture Early Recognition: Reject option

126

= One strategy: A reject option based multi-classifier early recognition system

= All classifiers try to recognize the gestures

= The fusion module merge trustable decisions
= Two types of reject are used to evaluate the confidence

= - ambiguity: the shape looks like beginning of several different gesture classes

= - outlier: the classifier has never seen this type of shape

a

Input A 4
gesture Wait for [ 5
—_— incremental
length

\ 4

Fusion module
with reject
option

Classifier R
hy Reject
Classifier _
hy Accept
Classifier R
h >
al Reject

Reject

Accept

© eric.anquetil@irisa.fr




_aap.12 | Gesture Early Recognition: Reject option 127

33P 33 P

/7SN

. Good Confusion Distance
Good Confusion o )
o recognition . Reject
recognition Reject
Unknown
input
© eric.anquetil@irisa.fr
_aap.12 | Gesture Early Recognition: Ambiguity rejection 128
= Ambiguity rejection [5] /
amp _ Pi T Pj i
i = Di / Cla;siﬁer Reject
1

where p; is the confidence value of best class,

p; is the second best class from the classifier.

[5] H. Moucheére and E. Anquetil. A unified

strategy to deal with different natures

of reject. In Pattern Recognition, 2006. ICPR

2006, volume 2, pages 792-795, 2006. Ambiguous area

© eric.anquetil@irisa.fr
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_aap.12 | Gesture Early Recognition: Outlier rejection 129

= Outlier rejection

i R Classifier Re ject
Estimate the outlier confidence value hy

using the minimum distance to the prototypes:

D; = min(d(ge g7))

Outlier rejection area

J¢ 1s a test sample, g; is the prototype sample of

class i, N is the number of prototypes.

= Reliability function

Oout _ e_% i D; = p

' 1 ifD; <

Where p and o is the minimum distance and deviation computed from validation set.

INSA':
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_aap.12 | Gesture Early Recognition: consistance checking 130

= Dynamic decision with consistance checking (N)
= N consecutive identical results in the stream of outputs
= Several recognitions during the drawing with more and more information

S

Reject Line Triangie Triangle
\ J
|
N
First decision Decision with consistance checking

INSA':
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_aap.12 | Gesture Early Recognition: Experiments

= Examples of Gestures: MGSet/ILG datasets

= (MGSet) Multi-stroke gestures (45 classes, 33
users, 6K samples)

= (ILG) Single-stroke gestures (45 classes, 21 users,

2K samples)
AN (1) . ——
2 > ~ > 7/ \ Q '—‘\J
R G oA
1 i ! Y
j w\ L 4 \// g
| N /‘

131
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_aap.2 | Gesture Early Recognition: Experiments

= Results (MGSet)
= (MGSet) Multi-stroke gestures N
(45 classes, 33 users, 6K samples)

With Reject Option (MGSet)
TAR FAR RR

. L . 1 81.89% 14.56% 3.54%
= Results with decision consistence:
. - N 0, 0, 0,
reject opt. allows to improve earliness & I >-71%
3 82.38% 8.85% 8.77%
100% -
T+
20%
w A —=— FAR
80% 1 - +_RR

70%

—e— ER (without reject)

60%

50%

Rate

40%
30%

20%

10%

0%

INSA =5

T II T I I T T T T T T
0 100 200 300 400 500 600 700 800 900 1000110012001300

Original length of the input gestures (pixels)

Earliness

37.04%

46.82%

55.89%

132

Avg. T (ms)
456.21

523.34

591.33

© eric.anquetil@irisa.fr




INSTITUT NATIONAL

‘ DES SCIENCES
APPLIQUEES
RENNES

Eric Anquetil (eric.anquetil@irisa.fr)
Dépt. Informatique

_Chapitre 13
Fuzzy Clustering
133
_cap.13 | Fuzzy clustering: Introduction 134

O What is cluster analysis ?

“partitioning a collection of data points into a number of subgroups (clusters), where the objects
inside a cluster show a certain degree of closeness or similarity”

s 22 .. Unlabeled
. .. data set

m Major difficulties to find "natural groupings”:
v Large variability in cluster shapes
» Classification criterion - Similarity or distance measure

v Number of clusters ?
s Cluster validity problem

© eric.anquetil@irisa.fr




_ap.13 | Fuzzy clustering: Examples

Q Pattern Recognition

; ‘P ‘ x5 X> 5
(e A 1
[ 0 Cj/ b X _\
III;Q.(J\ P T T " ] - :1' P2
el gb Fe v Y T
s . " i o /
L v _— *% [ .
“ff)g o 2 .o . g et \/ 5
NN i 1
Data

Clusters of similar feature vector

(image pixels, “color”) — regions

X
Original image Feature space d Segmented image

O Medical Diagnosis (patients, symptoms) — diseases

(patterns, (curvature, relative dimensicon, ...)) —* classes

135
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_cnap.13 | Fuzzy clustering: Outline

1. Data Representation and Notation
- Features
- Partitions

2. Clustering Methods
- Different clustering families
- Principles of dlternating optimization
- Hard C-Means
- Fuzzy C-Medns
- Possibilistic Clustering
- Cluster Vdlidity

3. Discussion and Application

136
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_cap.13 | Fuzzy clustering: Data Representation 137

QO Notation
sletD={x;/j=1..N} bethe dataset of Nitems x;
eletP={P;/i=I...C} be the C cluster prototypes

* Each x;is described by a feature vector: X; = (Xj, Xj2, ... , x,-n)T

( Data , Feature space) — clusters

(e x=05.0 . X)) P
O C-Partition
* A C-partition can be represented by a (CxN) matrix U=(u,-jj, where Hjj represents membership
of X;in P;
j i

data points

U = Clusters
Mep - Hc-j R
* A clustering algorithm = finds the { Uycn , Urem - Upemt which “best” explains and represent
the structure in X,

INSA

© eric.anquetil@irisa.fr

_cap.13 | Fuzzy clustering: Data Representation 138

Q Different partition properties

w constrained crisp pattition:

N (&
Uhcm= H;€ {01}, o< Zp.r_..:N , Zu}..zl
~ ij ~ i
j=1 i=1
w constrained fuzzy partition:
fo=========x , N ©
UFCME E“IJE [O:l]:a 0< Z “.U‘{N s z ”-U =1
e j=1 i=1
= unconstrained fuzzy pattition: Upcpy= Y i

i=1

do not necessarily sum up to one over any column

Uncem < Urem < Upem

INSA
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aap.13 | Fuzzy clustering: Different clustering families

QO Probabilistic Clustering

Example: Gaussian mixture decomposition

O Competitive Learning
Neural network based algorithms

Example: Self Organization Map (SOM)
O Vector Quantization

Example: LBG algorithm

O Alternatfing optimization
Clustering methods based on objective function

Example: Fuzzy C-Means algorithm

>> Many common points between these different approaches <<

© eric.anquetil@irisa.fr
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_cnap.13 | Fuzzy clustering: Alternating Clustering methods

QO General principle

“Alternating clustering methods are based on an iterative minimization of a criterion function
(objective function) to extract a partition of the data set”

Q General iterative algorithm /
alternating optimization
v step 1 (Initialization)

.'\‘\. . s o -\“‘w\
« Fix C, initial C-partition, ... R
-

v step 2 (Prototype adaptation)

» Calculate the C prototypes P;

1
v step 3 (Update the C-partifion) e :.':}\__ -
* "Label” evaluation of the data fam Yo i
» Update the C-partition matrix U ':o-
v step 4 (Termination) o
* Repeat steps 2-4 until the termination criterion is met

140
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_cnap.13 | Fuzzy clustering: Hard C-Means 141

INSA 5

m Based on a constrained crisp patrtition:

N C
wie {01}, o< 2 p.?.J.<N . ; }.LU. =1
j=1 i=1
J -5 . p
= The Objective function is the WGSS: rup~ T I dx;P)

QO HCM dalgorithm (Duda and Hart (Dud73))

N
v step 1 (Initialization) Y i
¢ Fix 2 < C < N, initial C-partition U(0) P, - i =:{
v step 2 (Prototype adaptation) z ”U
* Calculate the C prototypes P; j=1

v step 3 (Update the C-partition)
¢ Update the C-partition matrix U(®)

v step 4 (Termination) HU'(F i1y = {

* Repeat steps 2-4 until au<e

— min
Lod(x, P o) = M0 (d(x ) Pi)

0, otherwise

© eric.anquetil@irisa.fr

_cap.13 | Fuzzy clustering: Constrained crisp partition 142

INSA

C
™ e {01}, 2 “ij = 1 : means that each x;is in exactly one of the C clusters.
i=1

N
- 0< M. <N :means that no cluster is empty and no cluster is all of X,

=Y

m The objective function is the classical WESS (Within Group Sum of Squared errors)

C N

2
‘puD" _21 _Zl My d (5 P)
i=1 3=

m where d? represents a distance measure, for example the euclidean distance measure:

2 2 n 2
A7y P = By - kél("}k’Pz‘k)

w  The second version is based on:
find the centroid — reallocate the cluster memberships to minimize the errors between the
data and the prototypes.
P(-1) - U — PH

© eric.anquetil@irisa.fr




_cnap.13 | Fuzzy clustering: Hard C-Means 143

QO Classical example (The butterfly)

= * = s = = = - o
X} <
To which clusfer does Membership
the center point belong ? degree

1

Membership function X1

Q Discussion
w [N HCM clustering every point belongs to only 1 cluster (constrained crisp partition)
m Transition between full membership and no membership is abrupt
w Hard decisions on class assignments

w Consequently the 2 clusters can not be symmetric with respect to the center point

INSA:
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_cnap.13 | Fuzzy clustering: Fuzzy C-Means 144

w Based on a constrained fuzzy partition;

iiiiiiiiiiii . N @
e (010 o< Y po<n . Y opo -1
i _ =
fffffffffff - J= 4 i=1
m The Objective function is
c N m 2
J = .d (x.,P
P.UD ;'51;51“?“' (_] )

QO FCM algorithm (Bezdek (Bez81))
N
v step 1 (Initialization) 2 . )"x
. o ii’
s FiX2<C <N, T <m <<, initialize U0)
v step 2 (Prototype adaptation) i N .
» Calculate the C prototypes P; z (“ij)

v step 3 (Update the C-partifion) [T i -
)
* Update the C-partition matrix Ut 4 c { & x5 Py =1

v step 4 (Termination) k%; d2(x. Py
x;,

* Repeat steps 2-4 until AU<e

INSA:
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_cnap.13 | Fuzzy clustering: Fuzzy partition 145

m fransition between full membership and no membership is gradual rather than
abrupt.

L represent membership degrees

m soft decisions on class assignments

QO Parameters of Fuzzy C-means:
m C : Number of clusters
oy : Inifial C-partition
m d?(x;, P) = (x; - P)TA (x - P : “distance measure”
 If A = Identity maftrix then d? is the Euclidean Norm

m m is the weighting exponent called the “fuzzifier”
* When m—1, Fuzzy C-Means solution become hard.
* to control the “fuzziness” of the resulting clusters

INSA':
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_cnap.13 | Fuzzy clustering: Fuzzy C-Means 146

O The butterfly example

- . II"‘I\" . b
-t ¢t N L] |'o \-Ago
. . N
X] ““"l.‘
Parameters : Membership
degree
*m=20 1
* Euclidean Norm 0.5

| Membership function X

QO Discussion

w [N FCM clustering every point belongs to every cluster to different degrees (<=>
constrained fuzzy partition)

w Minimization of the error propagation during the iterative optimization (<=> soft
decision in each iteration)

INSA 5
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_cnap.13 | Fuzzy clustering: Fuzzy C-Means

147

O Example

~Membership contfour lines

25

Membership function

QO Interpretation

m Memberships can be interpreted as between class degrees of sharing

m The centers (prototypes) do not coincide with the true centers of the clusters
m [Nfluence of noise points
QO Useful for

the discrimination of clusters — extraction and modeling
of the best boundaries between clusters

© eric.anquetil@irisa.fr

_cap.13 | Fuzzy clustering: Fuzzy C-Means / example

148

(&) Fuzzy pattitioning of En

Mernbership degree

e

J S e

g_g — 1.4 {?ﬁﬁ%@ﬁ%‘m

BTy S B EE T el L e

o — 1.2 i e TR e g

- = gg«%%@w%. R
. .""zsz;’:“‘\‘\\‘\‘\‘\‘\ 5 (7 + Class G2
0.4 Palinss ‘\\\\\\\‘
0.2

30

Subcluster Ent Subcluster Enz Subeluster Ena
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_cnap.13 | Fuzzy clustering: Possibilistic clustering

wm The Objective Function is

149

C
m Based on a unconstrained fuzzy partition: \I\J‘<
i=1

m

v step 1 (nitialization)
* FiX2<C <N, 1 <m <<, inifialize U0)
v step 2 (Prototype adaptation)
* Calculate the C prototypes P;
v step 3 (Update the C-partition)
* Update the C-partition matrix Ut
v step 4 (Termination)

* Repeat steps 2-4 until au<e

INSA':

P,

2 P c N m
!"LU d (xj’ ;—)+f§j'ﬂ;—j§1(f—l~lv)

Q Algorithm (KrishnapuraméKeller (Kri94da) Kri93b))

N
Y " x
) i J
ji=1
i~ T N
m
_2 (K
i=1

ij

2 m—1
d(x.P.
P s e
n;

© eric.anquetil@irisa.fr

_cnap.13 | Fuzzy clustering: Possibilistic Clustering

O Example

o
] 20 40 60 B8O 100 120 140 180 180 200

Membership contour lines
Q Infterpretation

m | ow influence of Noise points
QO Useful for

INSA':

150

06~
04

oz

100 150

Membership function

m Memberships can be inferpreted as degrees of typicality (absolute numbers)

m The centers (profotypes) coincide with the “frue” centers of the clusters

the intrinsic characterization of each clusters

© eric.anquetil@irisa.fr




_cnap.13 | Fuzzy clustering: Cluster validity 151

“the determination of the optimal number of clusters present in the data is a difficult problem”

Q Cluster validity criterion

w Many different criterions of cluster validity :
« often based on a measure of compdactness and separability of the clusters.

O Different approaches

w [terative clustering:

« fry successively different values of C and evaluate the validity
m Progressive clustering:

« start with one cluster and try progressively to extract a new cluster
m Agglomerative clustering:

« start with many clusters and agglomerate the nearest clusters according o a neightbor-
hood criterion.

INSA':
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_cap.13 | Fuzzy clustering: two different goals 152

O Fuzzy C-means

Membership contour lines Membership function

2 40 B0 &0 0 130 en  1ed e 0

Membership contour lines Membership function

INSA':
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_cnap.13 | Fuzzy clustering: Shell clustering 153

“The extraction of shell-like clusters (with no interior points) needs the redesigning of the distance
measure and/or of the profotype of each cluster.”

O Example: The fitting of linear structure (e.g. lines)

~——_ protoiype

dis?‘ﬁncg o

Q Example: The fitting of circular shell

2
distance : d“(xj, <) = (”rj - Ci” 7[-i)2 profolype . (cj,ry)
-

. ‘/‘

wm Useful for the detection of boundaries and shapes of objects from images

INSA:
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_cap.13 | Fuzzy clustering: Examples 154
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_Chapitre 15

Classification: Linear Discriminant Functions

_Chap. 15 ification wi inear Discrimi uncti
| Classification with Linear Discriminant Functions

= Pattern x = (21, 29,...,2,) =—>2MRIAt in the n-dimensional vector space
= i€ numelN:al features
= Assumption: r,1<i<n

= Classes take separable regions which can be separated by linear discriminant functions
= Parametric models

T2

N d(z) = wizy + woxs +ws =0

Ch

ZE

156
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_aap1s | Classification with Linear Discriminant Functions

= How does it work?
= Labeled training data
= Calculate discriminant function (e.g., perceptron algorithm)

= Discriminant function

d(x) = wixy + - + Wy + Wyy = wat =0

= For an unknown pattern : x

S Cs, if d(z) <0
reject, if d(x) =0

INSA':

157
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_cnap. 15 | Linear Discriminant Functions — Generalization

= Linear discriminant functions are not always sufficient

= i.e. non linear hyperplanes are needed in . R"
5
3
o . %'35:”55 .
K .
IJ N
4 .
=1 0 1 2 3 4 S

INSA':
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_cnap. 15 | Linear Discriminant Functions — Generalization 159

= Linear disriminant function d(z) = wixy + -+ + Wy + Wy

= Generalized discriminant function
d(l‘) = ’w1f1<33) +---+ wmfm(x) + Wm+1
— w(a:*)t
= With
w = (wla s 7wm7wm+1)

vt = (fi(z),..., fm(x),1); fi(z),..., fm(z) : functions

= Procedure
= Reduce any arbitrary discriminant function of the above mentioned form to the linear form by

transforming the given pattern by application of functiazns into . f(z)
= In general " j.e. to enable linear separability transform patterns into a space of higher dimension.
m>=>n
INSN LI..I..I;;;:: 3 © eric.anquetil@irisa.fr
_cnap. 15 | Linear Discriminant Functions — Generalization 160
= Example of function f(z)
[Thierry Artiéres]
%y
4 £
5
3 1 2 -
, v - | Coy) 200068 +7)
:.' . . o . “';
. ) 2 ﬁa
E o | 2 3 4' ". 4 9-2._.n"
2 dimensions 3 dimensions

INSN NPURES © eric.anquetil@irisa.fr
......




INSTITUT NATIONAL

‘ DES SCIENCES
APPLIQUEES
RENNES

Eric Anquetil (eric.anquetil@irisa.fr)
Dépt. Informatique
Insa Rennes

Version 1.0

_Chapitre 16

Neural Networks

_cnap.16 | Neural Networks

Input feature

x3
x2

(=)

xXm

Output=F(input)

Shape properties

INSA

162

Output

Class 1
Class 2

éiass C

Class membership
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_aap.16 | MultiLayer Perceptron (MLP) 163

Input layer Output layer

Hidden layer

bias

Class 1
x1
X2
Class K
Class C
Input of a neural j f: activation function Input of neural K
of the layer 0 (example sigmoid):
m 1 n
aj=_Z Wjixi+wjO 0 ak:.z ijyj+wk0
1= 0 -1 =1
Output of neural j Output of neural k
yJ:f(aJ) zk=f(ak)
INSN LI.. © eric.anquetil@irisa.fr
_aap1s | MLP: Learning and generalization 164

= Learning and generalization capacities
= Learning

= consists of presenting an input pattern and modifying the network parameters (weights) to reduce
distances between the computed output and the desired output

—)

Features /

0000

classes

Input data base Classifieur
= Generalization / Feedforward
= consists of presenting a pattern to the input units

and passing the signals through the network
in order to get outputs units

55 1 s o S, — output

INSA':
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_aap.16 | MLP: Universal approximator

165
= MLP: Universal approximator: [A. Kolmogorov]

= “Any continuous function from input to output can be implemented in a three-layer net, given sufficient
number of hidden units, proper nonlinearities, and weights.”

->Any function IS
from input to output

can be implemented y
as a three-layer R
neural network wo layer . <

%
[Duda, PHart, Stork,

“Pattern Classification”] RS Xz /

‘ic.anquetil@irisa.fr

_aap.1s | MLP: Learning

166
= The aim
= Construction of a network :
= to define the nonlinear functions and the weight values

= The Learning process (supervised)
= Some empirical choices

= Number of neural and layers
= Activation functions

= Principles

= Present the network a number of inputs and their corresponding outputs
= See how closely the actual outputs match the desired ones
= Modify the parameters to better approximate the desired outputs

© eric.anquetil@irisa.fr




_aap.1s | MLP: Back-propagation (BP) algorithm 167

= Principle
= The error signal is obtained from the comparison between the target and estimated signal.
= The error signal is propagated layer by layer from the output layer to the input layer to adaptively adjust
all weights in the MLP.
= Back-propagation (BP) algorithm
= Let t, be the k-th target (or desired) output and y, be the k-th computed output withk =1, ..., ¢ and w
represents all the weights of the network

= The training error to minimize: 1 & o1 )

= Goal: E(W):EZ(yk_tk) :EHy_tH
We goes through the weight k=1
space to find the point
corresponding to the
minimum of the error

= Method: gradient descent

b =
P
e
‘ o aomcey ) .
APPLIGLEES © eric.anquetil@irisa.fr
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_aan.1s | MLP: Back-propagation (BP) algorithm 168

= The backpropagation learning rule is based on gradient descent

o _

OFE OF OF
oW

......

VE[w] ]

(3&:‘0 ' 8’!_-‘.,‘1

= Going back from “output” to “input”:
1 Calculate the derivatives of the error with respect to weights
2 Using these derivatives for adjust the weights

w(™) — w() _ ) VEw)] AW = -7 E

oW

where n is the learning rate which
indicates the relative size of the change
in weights

INSN e o © eric.anquetil@irisa.fr
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_aap.1s | MLP: Back-propagation (BP) algorithm 169

= Sensitivity deduce from the gradient descent
hidden-to-output (j > k) weights

oE  OE oy, oe,
oW, 0y, 0f, OWy

=0, Z; (because e, =w,;z;, partial input of a,)

_OE 3y,

= = -t ) f'(a
By, o€, (Y —t)T'(ay)

k
Input layer Hidden layer Output layer

Awkj = —775kzj

e, =W ,z;:partial input of k G — k)
y, output of k
Z; output of ]

© eric.anquetil@irisa.fr
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= Sensitivity deduce from the gradient descent
at a hidden unit (i->j):
= the sum of the individual sensitivities at the output units
weighted by the hidden-to-output weights w,;; all multipled by f'(a)

0; = f'(aj)kzwkj5k AW, = —110 ;X
=

= Backpropagation algorithm

The weights are initialized with pseudo-random values and are changed in a direction that will reduce the
error. Input layer  Hidden layer Output layer
Begin initialize ng; w, n, m=0
dom=m+1
X" « randomly chosen pattern
Wii = Wji = N&Xis Wj = Wy - ndez;
until Stopping criterion
return w
End

INSA - © eric.anquetil@irisa.fr
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_aap.1s | MLP: Learning with validation

= Learning with validation (to avoid overfitting)

=« Two Learning Databases:
One for the learning phase
One for the validation of the learning

« Test Database
Generalization evaluation

Error

Learning database

Learning cycles

171
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_aap.1s | MLP: knowledge modeling

= knowledge modeling
= Easy/Powerful learning
= Knowledge are distributed il all the weight of network
= Black-box system
= Discriminative learning: with Hyper planes

INSA':

172

© eric.anquetil@irisa.fr




173

_aap.16 | Radial-Basis Function Neural Networks (RBFNN)

Output layer

Input layer 1 hidden layer
Class 1
X =
Class C
= @ : radial activation function Output
distance measure to the prototype
(linear combination) n © (X
AN V= T W@ O g
I"sm © eric.anquetil@irisa.fr
_aap.1s | RBFNN : Learning 4 174
o
Two a hes for the learning phase: O IS
. pproaches for the learning phase: o 8 %o e
= 1/ Globally by backpropagation @ o o
= 2/ In two phases °
= a/ clustering to initialize the centers o® 9 ®
of the Radial Basis Function (RBF) o © PY
= b/ Output Weights R

learning by Least Mean Square (LMS)

=== Frontieres de
décision
7 Prototypes

e

© eric.anquetil@irisa.fr
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Reject Option

_aap.7 | Reject option

33P

/7SN

Good Confusion
recognition

33 P

Good
recognition

Confusion

Reject

Distance
Reject

Unknown
input
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_aap.7 | Reject option with thresholds 177

= With MLP : only confusion reject
= With RBFNN : both confusion and distance reject

Confusion
Reject
Distance Reject
© eric.anquetil@irisa.fr
_aap.7 | Distance reject / with thresholds 178

as

Coan

’Q
®

Activatiog degree

Pattern to reject

25 30 35 40 45 a0
X1

2D space representation

INSA':
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o

Cou

>AO
O

X2 25 30 35 40 45 50

ln‘_n:l.rup.'ulm
INSA 008 Boxces © eric.anquetil@irisa.fr
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; Class number or reject
n | Class number or reject | | ¥ e |
Class number T Rejection
’——{ Decision }——‘

Target / Reject . Reject option
Classifier | Target Classifier (Classifier)

(a) a Reject Class in the target classifier (b) a Specialized Classifier on the feature space
|Class number or reject | SCRF |Class number or reject | TRF
} I

1 P
iacti Class number Rejection
Class number cision Rejection ’——_ﬂ—‘l Jecision !

Target Classifier { 1#{" . }
T

Features Features

(c) a Specialized Classifier on the Reliability Func- (d) Thresholds on the Reliability Functions {«/; }
tions {4/ } [Mouchére07]

mestT N
INSA 008 Boxces © eric.anquetil@irisa.fr
nrunrs

+ Reject option
{®;} | (Thresholds)

Reject option
(Classifier)

Target Classifier
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= Evaluation measure Desired Positive Desired Negative
Positive N, True Positive Né‘ False Positive N?
Test Outcome
Negative N, | False negative NER True Negative NF?
= Recognition/Error Rates N A NF/:
= TAR: True Acceptance Rate TAR = N—E FAR = N \
= FAR: False Acceptance Rate E R
A R
= Accuracy Rates (“fiabilité") Accuracy = Ne+Ng.
= Global performance point of view Ne +Nqg
= recall (“rappel”) Recall =TAR |

information retrieval - the number of relevant documents retrieved by a search / the total
number of existing relevant documents
NE

Precision = —
Ng +Ng

= Precision (“précision”)
the number of items correctly labeled ethe positive class /
the total number of elements labeled e the positive class

information retrieval = number of relevant documents retrieved by a search divided by the
total number of documents retrieved by that search

© eric.anquetil@irisa.fr

_cap.17 | Evaluation: distance reject / evaluation R 182
N
. . . S TAR = —E
= Evaluation of outlier(distance) rejection N,
= ROC curves (Receiver Operating Characteristics)
= The optimum operating point is the top left point FAR — Né\ \
R

100% T T T I B

B - = H
;@ a0 == |
[am
<
'_
© 60 =
T
- Operating points -+
§ L c Pareto frontier -—---- |
I= Convex hull ——
&> Area under pareto frontier ]
[
e Area under convex hull (AUROCC) I |
g
=

Do z 1 | | |
20 40 60 80 100%

False Acceptance Rate (FAR %)

INSA 5
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_cnap.17 | Evaluation: confusion reject / evaluation

183

- - - - — A
= Evaluation of confusion rejection Err - Ne —Ne \
= error/reject curve (E/R curve) E
= The optimum operating point is the bottom left point N
Iy £
N
8% — '\ operating point -
\‘_i_ E/R convex hull curve - -
9 AUERC [
% 4%
S
|
_|_
2%
Tl +
H__i_i !
| | e ‘4: ______ I -
0% 10% 20% 30%

Reject rate (%)

INSA
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_aap.1s | Basic notion of Support-Vector-Machines (SVM) 185

= Clear reasonable (with constant intra classes

= Theoretically SVM are justified by statistic

= Origin in statistic learning theory; class of optimal classifiers
= Main problem of the statistic learning theory: Generalization ability

= When does a low training error cause a low real error?

Optimal. that with the largest of all possible
discrimination planes

variation classification confidence grows with
increasing interclass distance)

learning theory

+1 ifu,eC 1/2 1
_ _ j 1
X-{U,—,Cj}jwhere Cj—{_l ifu,ec,

find w and b such that
wu; +b>+1for ¢c; =+1

wuj+bs-1 for ¢; = -1
which can be rewritten as
cj(wuj+b)z+1

7(W.uj +b)=0

= Large/Max-Margin classifier / Linear Separable Classes
= With SVM a discriminating hyperplane with maximal border is searched.

Volker Margner
Haikal EI Abed

i akeint
*
Ry TR
X oW KK
%

Discrimination line 2 is better than line 1

© eric.anquetil@irisa.fr
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INSA =5

= Training max-Margin classifier
= Constraint optimization (two classes C, et C, (+1,-1))

= To find support vector /hyperplan parameters

= Margin to closest +1 (u;) and -1 (u,) points to be 1

—1I(w.u, +b) =1
+1(wu, +b)=1
- 2
= Maximize marge = —-
[wl
- Minimize %HWHZ 1/2 1

Maximize the margin | | & | Vectors u; outside the volume
1 2 . .
min 5||w|| subject to C; (wuj + b)z +1,V]

= Unconstrained problem using Lagrange multipliers

Volker Margner
Haikal EI Abed

& direction 2
z,

Discrimination line 2 is better than line 1
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= Classification
= Given unknown vector u, predict class (-1 or 1) as folows:

k
h(u) =sign (> a;y'x' -u+b) = sign(w.u +b)
i=1
= The sum is over k support vectors (x,y/)
= If Not linearly separable (Soft Margin)
= Vectors u; outside the volume, which
are correctly classified (c) i.e.

cj(wu;+b)>1 —> &,=0

= Vectors inside the volume, which
are correctly classified, i.e.

OSCj(W.uj+b)<l —> 0<¢&;<1
= Vector, which are wrongly classified If no discrimination line exists
5 | (slack variables)
c.(wu,+b)<0 — G >
j i cj(w.uj+b)21—§j
= Parameter Ccan be viewed as a way to control 1 m
overfitting: it “trades off” the relative importance minimize _”W”2 +C Z £
of maximizing the margin and fitting the training data. 2 =1 !
INSN Llnl.-x;::: h © eric.anquetil@irisa.fr
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= Nonlinear SVM = try a higher dimensional space | (XIP SOy x4
= Problem: Very high dimension of the feature space ;
= i.e. polynomes -th orderp R"™ = R™, m = O(n?) j :
= Advantage with SVM ; 5
= Learning depends only on dot product of sample pairs e

= Recognition depends only on dot product of unknown with sample
Trick with kernel functions:

= Originally in only R™ + products neces<;x;
= New in onlyR"™ :r product U(a)W(x;)y
= Solution:
. U(z,;)W(x;)e calculated explicitly, but can be expressed with reduced complexity with kernel
functions K(z;,zj) = ¥(x,)VU(x;)
= Example: for the transformation ¥ R? = RS
U((y1,92)) = (Wi ¥3, V291, V202, V25112, 1)
= computes the kernel function K(xixj) = (v + 1)? = U(x)U(x;)
the scalar product in the new feature space RS

INSN NPURES © eric.anquetil@irisa.fr
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= Strengthens of SVM
= SVM supplies very good classification results according to present expertise; for a set of tasks it is
considered as the “Top Performer”

= Sparse-representation of the solution by support vectors
= Easily applicable: small parameter set, no a-priory-knowledge necessary
= Theoretical statements about results: global optimum, generalization ability

= Weaknesses of SVM

= Multi-class approach still subject of research (extension to more classes e.g. with a hierarchical
procedure, where one certain class and the remainder are regarded as two classes )

= Slow and memory-intensive learning

= Tuning of SVMs is still a “black art”: Selection of a specific kernel and suitable parameters is made by
tests
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