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Recognition of natural gestures is a key issue in many applications including videogames
and other immersive applications. Whatever is the motion capture device, the key prob-

lem is to recognize a motion that could be performed by a range of different users,
at an interactive frame rate. Hidden Markov Models (HMM) that are commonly used
to recognize the performance of a user however rely on a motion representation that

strongly affects the overall recognition rate of the system. In this paper, we propose to

use a compact motion representation based on Morphology-Independent features and
we evaluate its performance compared to classical representations. When dealing with

15 very similar upper limb motions, HMM based on Morphology-Independent features
yield significantly higher recognition rate (84.9%) than classical Cartesian or angular
data (70.4% and 55.0% respectively). Moreover, when the unknown motions are per-

formed by a large number of users who have never contributed to the learning process,

the recognition rate of Morphology-Independent input feature only decreases slightly
(down to 68.2% for a HMM trained with the motions of only one subject) compared

to other features (25.3% for Cartesian features and 17.8% for angular features in the
same conditions). The method is illustrated through an interactive demo in which three

virtual humans have to interactively recognize and replay the performance of the user.
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Each virtual human is associated with a HMM recognizer based on the three different
input features.

Keywords: motion recognition, Hidden Markov Models, natural interaction, virtual hu-

man, Morphology-Independent representation

1. Introduction

Nowadays, a variety of interaction devices allows the user to interact with a virtual

environment in a natural manner. Low-cost systems have been widely used in the

videogame industry to directly interact with the game by using natural motions,

such as moving a device (Nintendo Wii or Sony Motion Controller) or moving the

full body (Microsoft Kinect). Modern mobile devices open a new way to interact

in 3D space in their camera’s field of view39. In serious games and virtual reality,

more accurate systems are generally used, such as magnetic sensors or optoelec-

tronic systems. Whatever the 3D motion capture device, one of the main challenges

consists in recognizing user’s actions and computing an appropriate reaction of the

virtual environment at interactive frame rate.

Prior motion recognition methods have generally been applied to a set of very

discriminated actions, such as walking, crouching, grasping38, or to actions ex-

hibiting strongly constrained spatiotemporal patterns32. However, navigating and

interacting in immersive environments require to deal with very similar upper limb

motions, such as manipulation tasks, pointing, grasping, hitting, pushing, pulling,

punching. In that case, the intrinsic properties of the motions are very similar as

they involve the same limited number of degrees of freedom in the same subspace.

As most previous methods generally rely on geometric features to classify the user’s

performance, the selection of the most relevant features is a key point to address

motion recognition. The selection of inappropriate features lead to failures in classi-

fying similar gestures because of inaccuracy in capturing the intrinsic properties of

each gesture. Indeed, motion capture data are strongly linked to the user’s anthro-

pometric data: long arms will provide larger displacements of sensors than smaller

arms even if the movement is supposed to be the same. Relevant features would

also make it possible to deal with motion variability: grasping performed by two

different users at several different target positions in space should be all recognized

as the same motion.

Most related works in this field is based on Hidden Markov Models (denoted

HMM). However, HMMs rely on features that strongly affect the recognition perfor-

mance, especially for very similar movements. In this paper we propose an original

alternative to classical Cartesian position of body joints17 or Euler angles28,18 in

order to limit the impact of morphological variations among users: the Morphology-

Independent feature. This feature is based on a normalized representation of the

human motion that is less sensitive to variation of morphologies. When used as

input of a classical HMM classifier, this feature exhibits significantly higher recog-

nition rates and seems to be promising in discriminating very close gestures such
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as slapping with the palm or with the back of the hand. The resulting recogni-

tion system has been tested on two-arm motions which are most commonly used

in videogames where the user is carrying devices in his hands to interact with the

virtual environment.

2. Related work

3D gesture recognition is used in videogames or serious games either to drive avatars

or to interact with simulated worlds. For the former type of application, many

researchers have worked on using accurate motion capture data to animate an

avatar2,26. Such methods compute the required information to animate each joint

of the virtual human while correcting some inaccuracies. Motion reuse has also

been widely explored to adapt motion capture data to characters with various

sizes and with different kinematic constraints10,34,20. However, in many cases and

especially in the game industry, low-cost devices are used and generate poor and

noisy information. With these systems, directly animating an avatar is difficult and

alternative solutions based on gesture recognition have been proposed.

Performance-driven animation generally relies on retrieving the motion that

best corresponds to the user’s performance by searching through a wide database

of prerecorded motions. For example, some authors proposed to control an avatar

in an iconic and intentional manner15. This approach used simple metaphors based

on the displacement of a plush doll. Such a performance-driven interface allows

more natural interaction facilities. With a few cameras and markers, it is thus

possible to animate the avatar of the user5. The low-dimensional control signals are

transformed into full-body motions by constructing a series of local models from a

motion capture database. Some of these methods take dynamics into account14and

yield impressive results for motions that are very different from each other. Slyper

and Hodgins introduced a simple metric to seek a database of motions in order

to retrieve the closest one to the user’s performance36 without considering the

semantics of the motion. On the opposite, pattern recognition techniques make

it possible to retrieve the semantic information of the motion in order to control

an avatar35,22. However, this type of system is generally limited to simple and

significantly different motions such as swinging arms or legs.

Whatever the type of interactive application, designing a recognition system to

automatically deal with a wide range of user morphologies and situations remains

challenging. Another problem is due to the high-dimensional and noisy nature of

motion capture data. Data reduction (Principal Components Analysis24) and fil-

tering methods (Hidden Markov Models6,25, Finite-State Machines12,13, Kalman

filters31, or more advanced particle filters and condensation algorithms16,21) have

been used to address this problem in computer vision, in inertial sensing or in

other application domains dealing with noisy sensors and/or noisy experimental

conditions.

Gesture recognition performed using 3D captured motions of users classically
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uses raw Euler orientations28 of the body segments despite their inherent non-

linearity and their direct link with the morphology of the user18. For example, two

users with different morphologies have indeed significantly different angles between

their arm and forearm even when performing the same task, such as clapping the

hands or putting the arms in the pockets. An alternative consists in defining rel-

evant geometric features that capture some of the semantic information. Most of

these techniques discretize the input space into clusters or areas27,23,9, or use La-

ban notation40 to encode complex motions in a compact and meaningful manner.

Whatever the method, comparing two motions consists in computing the distance

between them using a specific metric generally based on sequences of discrete fea-

tures. Some of these geometric features are independent of the morphology of the

user, such as checking if a hand is over a shoulder or if a foot is in front of the

character27. These features are then efficiently combined to retrieve a set of mo-

tions that satisfy predefined geometric constraints. Nevertheless, the discretization

of these features leads to inaccuracy at the boundary between two discrete val-

ues. This inaccuracy of each feature combined to the high dimensionality of the

feature vector can produce conflicting action classifications. As a consequence, the

recognition systems may fail to distinguish very similar motions, such as throw-

ing an object or punching someone. Besides, scientific literature is sparse in eval-

uating recognition systems on similar gestures. To reduce feature dimensionality

while preserving essential motion information, some authors proposed to boost the

classifiers25, so that the system automatically selects the features that provide the

highest performance for each classification task. This technique is time consuming

and involves long machine learning processes and huge databases of training sam-

ples. Raamana et al. 29 also analyzed the relevance of various features in 3D gesture

recognition. Their paper introduced the shoulder to wrist feature: the direction of

the wrist in the shoulder reference frame. It demonstrated that systems relying on

this feature outperformed those relying on angular features in a table-top scenario.

Although their gesture database exhibited intra-class variability (displacement in

several directions and heights) and inter-class similarity (similar type of gestures),

the authors did not evaluate the ability of the feature to deal with morphological

variability. Furthermore, the study was limited to 3 gesture classes.

Defining a generic set of features that would lead to high recognition rates and

reliable results despite morphology and style variations is still a difficult task. To

our knowledge, although a lot of studies have tried to preprocess the raw data

(discretization, projection on more subtle subspaces), only a few contributions ex-

plicitly addressed the problem of reducing inter-subject variability in the context of

natural 3D motion recognition. Yet, the reduction of the inter-individual morpho-

logical variability at motion representation stage should improve the downstream

classification result. The classification stage can therefore closely focus on motion

class variability since the morphological variability is dealt with before. As Turaga

et al. discussed in their survey37, dealing with anthropometric variations is still an
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important challenge and requires careful attention.

In computer animation, motion retargeting has proposed some solutions to ef-

ficiently tackle this problem, such as solving kinematic constraints10,7 or designing

Morphology-Independent representations 20,11. In this paper we propose to adapt

such Morphology-Independent representation to gesture recognition and demon-

strate that this type of features could efficiently address the problem of multi-user

motion recognition based on the most common method, namely HMM. The follow-

ing section recalls the general principle of HMM and how it has been used in this

work.

3. HMM-based recognition system

HMM are stochastic models that have been widely used to encode time series as

piecewise stationary processes. In fact, their Markovian nature that links the most

recent observations to the future ones makes them very suitable for sequential data

modeling. Basically a time-varying feature (for instance a trajectory) is modeled as

a state automaton in which each state stands for a range of possible observation

values of the feature while the transitions between states can model time (Figure 1).

The feature observation values and the transitions between states are driven by

probabilities, which makes HMMs very robust to spatiotemporal variations.
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Fig. 1. Graphical representation of our Bakis HMM with 7 states {Si} with diagonal covariance
distribution matrix. Feature probability densities bik are represented inside each state. A Bakis

HMM only allows self-transition and transitions from {Si} to {Si+1}. These state transition
probabilities are given by aij .

In this work, each gesture is encoded as a time-varying D-dimensional feature

vector with continuous values (typically a 3D trajectory). D stands for the number

of features. Such a gesture is modeled as a feature vector of length T formally noted

O = O(1), . . . , O(t), . . . , O(T ), where each feature vector is O(t) = (O1(t), . . . ,

Od(t), . . . , OD(t)) for a given frame t. Note that bold letters stand for vectors.

To recognize a class of gesture m, its spatiotemporal dynamic has to be modeled

as a HMM λm. This is the training phase. To fully encompass the huge variability

of the gesture class, the training algorithm requires a great number of repetitions

with variability of gestures (in term of joint trajectories, velocities and amplitudes)
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and in users’ morphologies. This training is performed thanks to an expectation-

maximization (EM) procedure: the iterative Baum-Welch method30.

During the classification phase, an unknown motion is classified among the

trained movement models Λ = {λ1, . . . , λM}. To this end, we concurrently compute

to which degree an unknown motion observation sequence O matches each λm (see

Figure 2). O is then associated to the class of gesture model which provides the

maximum likelihood:

GestureClass(O) = arg max
m=1,...,M

P (O |λm)

where P (O |λm) expresses the similarity between the motion model λm and the

unknown motion O .

Best state paths 

λ1 

λ2 

λm 

Raw motion 
sequence 

Feature vector O(1) O(1) O(t) O(T) O(0) O(2) 

Likelihoods 

P(O|λ1) 

P(O|λ2) 

P(O|λm) 

HMMs 

Most likely 
Gesture 

Class 

Decision 

Fig. 2. Classification process. 1) Raw motion data corresponding to an unknown gesture serve
as input. 2) Features are extracted. 3) For each HMM λm, the Viterbi algorithm determines the

state path (qm(1, . . . , T )) that best matches the feature sequence, and provides the corresponding

likelihood. 4) The HMM associated to the greatest likelihood is selected as the gesture class that
best represents the gesture to recognize.

In this study, each gesture model λm is encoded as a first-order continuous

Bakis HMM with 7 states (Figure 1). The Bakis topology, also called left-right

topology, requires transitions to be either self-transition or between states {Si}
and {Si+1}. In fact, Bakis topology seems well adapted to gesture modeling as

it correctly models its sequential nature, especially when no cyclic motion occurs.

Moreover Romaszewski and Glomb33 showed that ergodic (or fully connected) and

Bakis topologies yield best results. But the greater computational complexity of

the ergodic topology makes it less interesting for real-time purpose. Bakis topology

was thus selected in this paper.

All HMMs have 7 states with a mixture density of maximum 6 multivariate

Gaussian distributions with diagonal covariance matrix. Automatically deciding

the number of states and mixture components is hard in practice1. Although the
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Akaike or Bayesian Information Criterion have been proven to be suitable to opti-

mize the number of components in a Gaussian mixture, very few practical studies

have been carried out to evaluate these criteria to select the best number of states

number4. As suggested in the literature25, we have made a pre-experiment to de-

termine the number of states and mixture components that are the best trade-off

between computational complexity and achievement of good classification. In this

experiment, the number of states and of Gaussian components vary from 1 to 20

and the database was randomly half-splitted between training and validation sets.

For each set of input features, using more states or more Gaussian components

than the trade-off parameters (i.e. 7 states and 6 Gaussian components) leads to

very little improvement of the recognition rate (less than 1%) of the validation set,

while increasing the computation time. Moreover we checked that the recognition

rates of each gesture class reached a plateau.

Once the HMM parameters have been selected, all HMMs λm are trained over

repetitions of the respective gesture classes m. After this training phase, the real-

time classification of any unknown gesture can be performed, as depicted in Fig-

ure 2.

4. Morphology-Independent features

Raw motion data are represented as a hierarchy of 19 body segments. Each body

segment can move around 3 orthogonal degrees of freedom (DoF) corresponding to

rotations, resulting in a total of 57 DoF. In this work we focused on upper limb

motions and only the corresponding DoF are considered for recognition. Among the

wide variety of kinematic representations, most researchers either rely on Cartesian

data (e.g.17) or Euler angles (e.g.19,28). However, these parameters directly depend

on the morphology of the user. The resulting HMM recognizer may thus be very

sensitive to variations in the user’s dimensions, and may lead to bad performance

when dealing with new users. In this paper, we propose to evaluate if Morphology-

Independent features can overcome this limitation. We consequently evaluate the

performance of the HMM recognizer based on the three following representations:

• Euler-based OEuler composed of 24 features: the 3 local orientation an-

gles of each shoulder and elbow, plus the corresponding derivatives. These

latter derivatives are included for each feature representation because, as

highlighted by Campbell et al. 3, velocities should play a major role in

recognition tasks.

• Cartesian-based OCartesian composed of 24 features: the 3 Cartesian posi-

tions of each wrist and elbow in the shoulder reference frame for both sides,

plus the corresponding velocities. All the 3D coordinates are given in a lo-

cal coordinate frame attached to the hips RHips so that root orientation is

compensated. Features are thus invariant with respect to where the action

is facing.

• and the Morphology-Independent OMI composed of 12 features: the 3 nor-
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rArm  

rArm  
MI 

RHips 
 

Fig. 3. The Morphology-Independent representation encompasses two 3D vectors rMI
Arm linking

each shoulder to its respective wrist expressed in the local frame RHips, divided by the total
length of the arm (dark orange arrow). Their velocities are also included. The light orange dotted

arrow indicates the Cartesian vector linking each shoulder to its respective wrist rArm . The

Cartesian feature representation also includes the derivative ṙArm . The Euler features are based
on the 3 rotations around local shoulder and elbow frames (red/green/blue frames), plus their

derivatives.

malized positions of both wrists in the corresponding shoulder reference

frame, plus the corresponding derivatives (see Figure 3). This motion rep-

resentation is inspired from the work of Kulpa et al.20 for motion editing in

computer animation. We adapted this representation to gesture recognition

by taking velocities into account and not considering elbow joints that are

very sensitive to variation in morphology.

The assumption behind Morphology-Independent feature is that most of the

human tasks deal with kinematic constraints expressed in world Cartesian positions,

such as the position of an object during grasping or manipulation, or the position of

the hands during clapping for instance. However, the length of the body segments

may be different from one user to another, leading to different angular configurations

for the same Cartesian task. For instance, clapping the same way for two different

users may lead to different elbow angles. On the opposite, using Cartesian positions

ensures an accurate evaluation of the final joint that is supposed to interact with

3D objects in the environment but the intermediate joints varied a lot depending

on the morphology. To deal with various upper limb dimensions, this information

has to be normalized by the length of the corresponding kinematic chain: arm and

forearm. This Morphology-Independent representation of the upper body is thus a

scaled version of the Cartesian-based representation: 3D vectors are normalized by
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their maximum extension, i.e. the arm length (see Figure 3).

rMI

Arm(t) =
rArm(t)

max ‖rArm‖
This representation is expected to reduce the influence of the subject morphol-

ogy: when the arm is totally extended
∥∥rMI

Arm

∥∥ = 1 and when it is half extended∥∥rMI
Arm

∥∥ = 0.5 whatever the size of the subject. We also add the corresponding

derivatives ṙ
LArm

and ṙ
RArm

. As a result, at time t, the MI-based features are:

OMI(t) = (rMI

LArm
, ṙMI

LArm
, rMI

RArm
, ṙMI

RArm
)(t)

The Morphology-Independent feature is different from the shoulder to wrist di-

rection feature (S2W) introduced by Raamana et al. 29. Firstly, their feature capture

the direction of the wrist in the shoulder reference frame whereas the Morphology-

Independent feature also capture the normalized distance between the shoulder and

the wrist. This information is particularly important since it defines the extension of

the arm. Indeed, a subject in T-pose or touching his shoulder with his fingers would

roughly result in an equal S2W value if the direction of the wrist is unchanged. The

MI feature discriminates such postures. Secondly, we added velocity information as

suggested by Campbell et al. 3.

5. Evaluation method

In order to evaluate the relevance of using Morphology-Independent data as input

of natural motion recognition systems, we tested this feature against the two types

of features classically used in the literature and described above: Euler angles and

Cartesian positions. These three features are used as inputs for a common HMM-

based system to recognize natural 3D gestures.

As existing motion capture databases are not dedicated to similar upper limb

motions, we created our own database with 15 different gestures (Figure 4): ap-

plause, crossing arms, slap with palm, slap with back hand, touch chin, throw

something, hands on hips, hands in pocket, grasp something at hip level, grasp

something high, grasp something at chest level, punch, hello high (with one hand

above the head), hello head (with one hand at head height) and uppercut.

10 subjects (age 25±4 years old, height 171±11cm) performed each motion at

least 5 times each side and were instructed to include high variability (in speed, lo-

cation and amplitude). This population included 5 men and 5 women with different

morphologies. We used an Optitrack system (product of Natural Point) to capture

the motion of 34 reflective markers placed on the whole body of the subject. Af-

ter post-processing (such as interpolation of missing data) the resulting data were

stored in BVH files. The BVH files contain data available for the full body but only

data linked to the two arms were used in the following experiments. This database

is freely available onlinea.

awww.m2slab.com/data/gesture-recognition/database
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Fig. 4. The 15 upper limb motions used to evaluate the system. Some of the motions share very
similar geometric properties to evaluate the performance of the recognition system.

Our database involves two-hand motions and some of them share very similar

geometric properties, such as slapping with palm or with the back of the hand. In

previously published works, most of the authors focused on very different motions

such as walking, grasping, sneaking. In most interactive applications the user cannot

move around a lot and has to mainly use his arms to interact with the environment.

It is therefore important to be able to correctly recognize and distinguish these

upper limb motions even if they seem to be very similar.

Several experiments have been carried out to evaluate the impact of morphology

on the recognition rate of these three types of features. They consist in using the

motions of a subset of subjects to train the recognition system while using the

motions of the other subjects for validation. The subjects used for validation are

new users for the system and this kind of experiment demonstrates the influence

of new morphologies on the recognition rate. This experiment is known as ”Leave-

One-Out approach” and denoted L1O in the paper. The evaluation of the features

is then made by successive experiments from the L1O (one subject not used for

training) up to L9O in which only one subject is used for training and the system

tries to recognize the motions of all the other subjects.

5.1. Leave-One-Out approach

When extracting the motions of only one subject in the database for training, the

Morphology-Independent feature already shows significantly better performance

than other features: 85% for Morphology-Independent data, 70% for Cartesian data

and 55% for Euler data. A Friedman’s ANOVA demonstrates the influence of fea-

tures on recognition rate, χ2(2, N = 150) = 52.91, p < 0.0001. A post-hoc Wilcoxon
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signed rank test shows the significantly higher recognition rate for the features based

on Morphology-Independent data compared to Cartesian data (T = 0.343, p < 0.05)

and Euler angles (T = 0.657, p < 0.05). Moreover, the smaller standard deviation

of Morphology-Independent data shows that it seems to be less sensitive to deal

with new users contrary to other features that have high standard deviations. The

latter are mainly due to large variations between subjects. For instance, the sub-

ject with the worst score is associated with a mean recognition rate of 35.3% when

using Euler data. The subject with the highest score obtained a mean recognition

rate of 76.2% when using the same data. The recognition rate becomes 66.0% and

99.3% respectively for the subjects with the lowest and highest scores when using

Morphology-Independent data.

Table 1 provides the recognition rate for each type of motion for the three tested

features. One can see that using Morphology-Independent data leads to higher

performance (minimum is 63% for a punch) compared to Cartesian data (minimum

is 47% for grasping an object placed at a high position) and Euler data (minimum

is 17% for grasping an object placed at a high position).

Motion Morph.-Ind. Cartesian Euler

(%) (%) (%)

1. Applause 90.9 88.9 69.9
2. Crossing arms 100 87.5 80

3. Slap with palm 76.4 61 52.3

4. Slap back hand 80.2 75.4 45.1
5. Touch chin 96.4 68 53

6. Throw 77.5 70.8 69.2

7. Hands on hips 96.7 87.3 88.3
8. Hands in pocket 97.2 90 68

9. Grasp hip level 84.9 46.7 17.1

10. Grasp high 90.6 70.9 89.3
11. Grasp chest 84.2 57.3 35.5

12. Punch 62.6% 64.7 51
13. Hello high 94.5 80.7 26.5

14. Hello head 77.7 33.4 24.2

15. Uppercut 64.2 73.7 55.7

Mean ± std 84.9 ± 11.8 70.4 ± 16.2 55.0 ± 22.7

Table 1. Recognition rate for each motion and each type of feature for the Leave-One-Out

approach. Statistical analysis confirm the significant higher recognition rate of Morphology-
Independent features compared to the others.

The confusion matrices for all 10 L1O experiments are presented in figures 5, 6

and 7 for each feature.

5.2. Leave-n-Out approach

In real situations, the recognition system cannot be trained on all the potential

users. On the contrary, the training is performed on a small database compared
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 93 6 0 0 0 0 0 0 0 0 0 1 0 0 0

2 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 79 0 0 13 0 0 0 0 3 1 0 1 3

4 0 0 1 84 0 3 0 0 0 3 0 0 0 5 4

5 0 0 4 0 96 0 0 0 0 0 0 0 0 0 0

6 0 0 7 1 0 81 0 0 0 0 0 4 0 0 7

7 0 1 0 0 0 0 97 1 0 0 0 0 0 0 0

8 0 0 0 0 0 0 3 97 0 0 0 0 0 0 0

9 0 0 7 1 0 0 0 0 83 0 7 1 0 0 0

10 0 0 0 0 0 0 0 0 0 88 0 0 12 0 0

11 0 0 1 10 0 0 0 0 1 3 81 3 0 0 0

12 4 0 9 0 1 7 0 0 0 0 7 65 0 0 6

13 0 0 2 0 0 2 0 0 0 0 0 0 95 0 2

14 0 0 7 0 0 0 0 0 0 4 1 0 10 77 0

15 4 0 16 0 0 11 0 0 0 0 0 4 0 0 65

Fig. 5. Confusion matrix of Morphology-Independent feature for L1O. True motion classes appear

in rows, recognized motion classes appear in columns. See table 1 for correspondance between

numbers and motion class. Note that each subject did not perform the same number of motions
(between 5 and 7) leading to a slight difference with table 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 89 3 0 0 0 0 0 0 0 0 0 3 0 0 5

2 3 97 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 64 0 0 18 0 0 0 0 11 5 0 0 3

4 0 0 6 75 0 7 0 0 0 0 6 1 0 0 4

5 0 0 2 10 66 0 0 0 12 0 6 0 0 0 4

6 0 0 15 0 0 82 0 0 0 0 0 2 0 0 2

7 0 2 0 0 0 0 89 9 0 0 0 0 0 0 0

8 0 0 0 0 0 0 9 91 0 0 0 0 0 0 0

9 0 0 19 3 0 3 0 0 48 0 17 6 0 0 3

10 0 0 0 0 0 3 0 0 0 71 16 0 8 0 2

11 0 0 16 5 0 6 0 0 6 3 55 5 3 0 2

12 9 0 6 0 0 13 0 0 0 0 3 66 0 0 3

13 0 0 0 10 0 0 0 0 0 7 2 0 82 0 0

14 0 0 8 22 0 2 0 0 2 2 11 0 18 35 2

15 7 0 10 0 0 6 0 0 0 0 0 3 0 0 74

Fig. 6. Confusion matrix of Cartesian feature for L1O approach

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 76 3 0 0 0 0 0 0 0 0 0 18 0 0 3

2 13 87 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 53 0 0 9 0 0 0 15 3 9 0 0 11

4 0 0 9 41 0 6 0 0 0 12 4 4 3 3 18

5 0 0 4 0 58 2 0 0 0 6 24 6 0 0 0

6 0 0 5 0 0 73 0 0 0 0 0 13 0 0 8

7 16 2 0 0 0 0 83 0 0 0 0 0 0 0 0

8 10 0 0 0 0 0 10 71 0 0 2 3 0 0 3

9 0 0 5 0 0 9 0 0 16 20 30 13 0 0 8

10 0 0 0 0 0 10 0 0 0 90 0 0 0 0 0

11 0 0 3 0 0 6 0 0 0 52 33 6 0 0 0

12 8 0 2 0 0 11 0 0 0 0 3 61 0 0 16

13 0 0 8 13 0 8 0 0 0 48 0 0 23 0 0

14 0 0 26 9 0 9 0 0 0 9 8 0 12 26 0

15 9 0 6 0 0 6 0 0 0 1 0 23 0 0 55

Fig. 7. Confusion matrix of Euler feature for L1O approach
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to all the persons (and their corresponding morphology) that can use the system.

We therefore made the same experiment with 2 subjects left out from the training

phase (L2O : Leave-2-Out), 3 subjects (L3O), up to the case where only the motions

of one subject is used for the training phase and the motions of all the 9 others for

the classification phase (L9O).
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Fig. 8. For each feature, evolution of recognition rate depending on the evaluation approach. The

more on the right of the graph, the greater is the number of new users who have to be recognized.
Morphology-Independent feature recognition rate only slightly decreases when at least 60% of the

users are unknown in the system.

The figure 8 shows the global recognition rate for all the type of motions de-

pending on the evaluation method (from L1O to L9O). When the number of sub-

jects used for training decreases (and thus the number of new users increases),

the recognition rate of Cartesian and Euler features falls down more rapidly than

Morphology-Independent features. The score of this latter indeed falls from 85%

to 68% in the worst situation (the motions of only one subject are used for train-

ing). The recognition rate of both other features falls down to less than 30% for

this worst situation. Moreover, the score of Morphology-Independent features only

begins to fall when at least 60% of the motions to recognize are performed by new

users (L6O).

The better performance of the Morphology-Independent feature, that was al-

ready significant for the L1O method, is still significant for all the other methods

(from L2O to L9O). Friedman’s ANOVA were again used to demonstrate the in-

fluence of features on recognition rate and post-hoc Wilcoxon signed rank tests

confirmed each time the significantly higher recognition rate for the features based

on Morphology-Independent data compared to Cartesian data and Euler angles.

The weak recognition performance obtained with classical features may not only
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be due to changes in morphology. A new user is not only a new morphology to deal

with, but also a new style in performing motions. Let us consider two subjects J

and K of same gender, with similar sizes and weights in our database. In L1O

approach, the recognition rate of the uppercut motion is 20% for J , while it is 100%

for K when using Cartesian data. It seems to demonstrate that the style of J is very

different from the other subjects who were used to train the system. Conversely, K

has a more ”standard” style for uppercut. This kind of results also changes according

to the motion class. For instance, slapping with the palm is 100% recognized for J

and only 40% for K when using Cartesian data. In short, recognition rates depend

on both the subject and the motion class. These results show that style is also a key

problem when developing recognition systems. However Morphology-Independent

data which were initially designed to be less sensitive to changes in morphology

seem to be also more appropriate to deal with style than Cartesian or Euler data.

5.3. Application to an interactive game

In order to evaluate the three HMM recognizers in real conditions, we have designed

a simple interactive game. The user was equipped with reflective markers at the

same locations than those used for the database. The user was placed in front of a

wide screen where three virtual humans are displayed (see Figure 9).

The user has to perform one of the 15 motions studied in this paper without any

other constraint. To segment the continuous motion capture flow, we compute the

distance between the rest pose and the current one of the subject. When this dis-

tance goes beyond a threshold, the user is supposed to perform one of the motions.

When this distance returns back below the threshold, we assume that the motion

is finished. This simple segmentation algorithm enabled us to start the recognition

process after this last event occurred.

Three recognizers have been run concurrently with Cartesian-based, Euler-based

and Morphology-Independent features respectively. Once each recognizer has com-

puted the recognized motion, this latter is played by the corresponding virtual

human. The user had a wireless mouse close to his hand at rest posture and could

give a score to each virtual human: 1 (left-button) if the motion was correctly

recognized and 0 (right-button) otherwise. This game was repeated 10 times (10

motions were randomly selected among 15 by the user) and the scores were summed

for each virtual human leading to a global score between 0 and 10. The virtual hu-

man with the highest score won the game. We selected this application because it

was impossible to predict what motion the user decided to perform.

The whole experiment was repeated 10 times. The results indicate a mean

recognition rate of 8.8 ± 0.6 for Morphology-Independent features, 7.2 ± 0.8 for

Cartesian-based features and 5.0± 1.1 for Euler-based features. These results con-

firm the significantly better recognition rates for Morphology-Independent features

(Cochran’s Q Test χ2(2, N = 102) = 44.98, p < 0.001).

The recognition process was running on a standard PC with an Intel Core 2
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Fig. 9. Experimental set-up for the interactive application.

Quad CPU Q8400 2.66GHz with 4Gb memory. The average computation time is

consistently less than 1% of the gesture duration and is thus compatible with inter-

active applications. Moreover, the computation time for Morphology-Independent

data is twice smaller than for Cartesian or Euler ones. Indeed, even if the recogni-

tion rate of Morphology-Independent data is significantly better, it is only based on

a 12 features while the others are based on 24. This has an obvious impact on the

computation time which should remain as small as possible in the context of video

games for example (concurrent need of rendering, animation, network, sound, etc.).

6. Conclusion

The main contribution of this paper is to propose and evaluate a new type of

generic features for natural human motion recognition. The key idea is that impor-

tant differences in morphology between users are difficult to deal with, especially

for motion recognition systems used for the general public such as Nintendo Wii or

Microsoft Kinect. The Morphology-Independent feature allows to tackle this prob-

lem at the motion representation stage and to maintain a high recognition rate,

even if the HMM system has never been trained with the user’s motions. Indeed

dealing with new subjects may lead to new morphologies but also to new styles.

We clearly demonstrate that the classical Cartesian or Euler-based features fail to

address this problem for very similar motion, while using Morphology-Independent

data leads to higher recognition rates.

This study has been performed on a database of 3D motions captured with

an accurate system. An interesting perspective of this work is to evaluate whether

the Morphology-Independent feature is robust to noisy signals measured by less

accurate sensors.
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This study was limited to the two upper limbs which are involved in most of

the applications based on motion recognition. This work could be extended to a

full-body representation of the motion, as suggested by Kulpa et al.20 for computer

animation purposes. Further experiments are required to check if this representation

is appropriate for full-body motion recognition.

In this paper, the HMMs were chosen because of their popularity in the field

of motion recognition. It could be interesting to use the Morphology-Independent

features with other types of classifiers, such as Support Vector Machine13 or Ar-

tificial Neural Networks8. Recent works tend to use machine learning to identify

the most relevant combination of weak classifiers that provides the best recognition

rate. These works use a huge amount of features and let the learning process define

which ones are relevant. Such systems could also use Morphology-Independent data

as basic features to tackle problems due to changes in morphology.

Another challenge of motion recognition systems is to address both segmentation

and recognition in a real-time framework. In interactive games, the system indeed

cannot wait the end of the user’s motion to determine the action he performed

and to start the appropriate reaction. Early recognition methods should then be

explored. The dimension of the Morphology-Independent feature is smaller than the

classical ones and allows faster gesture recognition. It is also impossible to invite

the user to move during some imposed time windows. These two problems are key

points for future developments. To address this complex problem a first step is to

design a method that is robust even when only few data are available. Selecting the

relevant features is one step in this direction.

By using more appropriate features it might be possible to recognize a motion

with only a few information, such as using the early first frames. It is of great interest

for applications which involve recognizing motions as rapidly as possible, such as

animating avatars of the user or enabling real-time interaction with a dynamic

environment. In such highly time-constrained applications, it is not possible to wait

until the end of the user’s performance to begin to react. Morphology-independent

data seem to provide good recognition rate even for similar motions but new studies

have to be carried-out to check if they also enable earlier recognition compared

to other types of features. We should also analyze if it can help to segment the

motion stream in order to jointly detect and recognize motions in such interactive

applications.
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