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Abstract—This paper presents a novel approach, called
AirScript, for creating, recognizing and visualizing documents in
air. We present a novel algorithm, called 2-DifViz, that converts
the hand movements in air (captured by a Myo-armband worn
by a user) into a sequence of z,y coordinates on a 2D Cartesian
plane, and visualizes them on a canvas. Existing sensor-based
approaches either do not provide visual feedback or represent
the recognized characters using prefixed templates. In contrast,
AirScript stands out by giving freedom of movement to the user,
as well as by providing a real-time visual feedback of the written
characters, making the interaction natural. AirScript provides
a recognition module to predict the content of the document
created in air. To do so, we present a novel approach based on
deep learning, which uses the sensor data and the visualizations
created by 2-DifViz. The recognition module consists of a Convo-
lutional Neural Network (CNN) and two Gated Recurrent Unit
(GRU) Networks. The output from these three networks is fused
to get the final prediction about the characters written in air.
AirScript can be used in highly sophisticated environments like
a smart classroom, a smart factory or a smart laboratory, where
it would enable people to annotate pieces of texts wherever they
want without any reference surface. We have evaluated AirScript
against various well-known learning models (HMM, KNN, SVM,
etc.) on the data of 12 participants. Evaluation results show
that the recognition module of AirScript largely outperforms
all of these models by achieving an accuracy of 91.7% in a
person independent evaluation and a 96.7% accuracy in a person
dependent evaluation.

I. INTRODUCTION

During the Information Age, the media where documents
are created has undergone a fast transition from traditional
paper-based methods to any digital device. Documents are
nowadays created in laptops, PCs and smartphones, by means
of text editors and drawing tools, or alternatively generated in
real-time on flat surfaces able to perform handwriting recog-
nition. However, despite the progress, all of these methods
are limited in that they restrict the region where the input is
received to a given surface of reference.

In this article we introduce AirScript, a novel approach for
document creation in air, whereby a sensor device is attached
to the user’s arm, capturing its movements. This way, we
eliminate the dependency on a reference surface, overcoming a
major drawback of the previous methods. Our method has the

*These authors contributed equally to this work.
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Fig. 1. A smart classroom scenario we envision: AirScript can be used to
write in air by wearing a Myo-armband. The left images show how a person
writes in air (in our case, digits). The numeric label in orange represents
the sequence of hand movements. While the person writes in air, the Myo-
armband captures raw IMU and EMG signals from the arm and sends it
to AirScript, running on a digital device. AirScript gives a realistic visual
feedback to the user in real time on that device, showing what the user wrote
in air. It also recognizes the written digit, giving possible suggestions for it.

potential to enable people to annotate pieces of texts wherever
they want, with complete freedom of movement. It could be
used in highly sophisticated environments, such as a smart
classroom or a smart factory. The recognized content could
then be easily displayed on a board or any other canvas if the
user so likes.

AirScript is composed of two modules. Its visualization
module, 2-DifViz, projects the multi-dimensional sensor data
onto a 2D surface, producing a realistic visualization of the
input. This visualization is then used, along with the raw
sensor data, by AirScript’s recognition module to predict the
content of the hand movement. We developed our proof of
concept using a Myo-armband, as described in Section IV-A.
Finally, our recognition module performs Handwritten Digits
Recognition in Air (HDRA). The data sensed by the Myo-
armband is fed into a Gated Recurrent Unit (GRU) network.
2-DifViz produces differential features that are fed to another
GRU Network, as well as used to produce visualizations that
are fed to a Convolutional Neural Network (CNN). The result
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Fig. 2. Visualization of the hand movements for the digits that were drawn
in air. Section IV-B describes how the hand movements were converted into
a sequence of x,y coordinates, represented in the form of images.

of the three networks is then fused to produce a prediction of
the digit written in air. It was found that this fusion made the
classification results more robust when testing the model with
several participants. Figure 1 shows an example scenario, in
which we envision that our approach could be employed. A
demo video is also available.?

To gauge the performance of AirScript, it is evaluated on
HDRA data of 12 different participants. Evaluation results
reveal that AirScript achieves an average accuracy of 96.7%
on a person dependent evaluation, and 91.7% on a person
independent evaluation. Furthermore, the visualization of hand
movements produced by AirScript are also very realistic,
which makes it suitable for using in real scenarios. Figure 2
shows the visualization of the hand movements of the par-
ticipants while they were drawing the digits in air. This not
just shows the potential of the proposed HDRA model but
also makes it evident that the recognized digits can also be
converted into a reproducible human readable format.

II. RELATED WORK

A lot of work has been done on extending and simplifying
the process of creating documents. Examples include using
gesture-based input control [1]-[4], swipe-based input meth-
ods [5], voice-based input methods [6] and even interaction
methods on imaginary surfaces [7]. Specially relevant to this
work are methods that create a Virtual Reality® environment
where the user explicitly inputs information. Because of their
Virtual Reality nature, these methods are inadequate in envi-
ronments where the user has to interact with real world objects,
such as a smart factory or a smart class. Our approach differs
from these methods in that the user remains in the real world.

Handwriting Recognition in Air (HWRA) has been per-
formed by Amma et al. [8], using a prototype glove with an
embedded IMU sensor, showing promising results. They com-
bine a Hidden Markov Model (HMM) with a language model,
and achieve a word error rate of 11% on a person independent
evaluation and 3% on a person dependent evaluation. However,
their method does not give any visual or haptic feedback to

Zhttps://drive.google.com/file/d/0B5xrMEupo2dPbEk4ekNVOUhMOWs.
Notice that only single digit recognition is done. The system does not
perform recognition of cursive script as it seems to do in the end of the
video.

3For example, https://www.tiltbrush.com/

the user. Alternative computer vision-based approaches relying
on finger tracking* or multi-camera 3D hand tracking have
been used for HWRA [9]-[11] but face problems similar to
those of the finger tracking approaches. These methods are
dependent on a tracking device that has to be on the line of
sight, restricting the freedom of movement of the user. To our
knowledge, Deep Learning methods have not been explored
for HWRA.

In opposition to HWRA, handwriting recognition on surface
using Deep Learning models like Bidirectional LSTMs [12],
Connectionist Temporal Classifiers [13], and Multidimentional
RNNSs [14] have outperformed other baseline models. Similar
Deep Learning models, such as Convolutional Neural Net-
works [15], have also shown improved results in the domain
of gesture recognition.

III. DATA ACQUISITION

To train and test the performance of AirScript, a dataset was
collected from 12 right handed participants while they drew
digits in air. The recording includes raw IMU and EMG signals
from a Myo-armband as well as their ground truth labels. For
data acquisition and visualization, a complete Graphical User
Interface based solution called Pewter’ was developed.

The Myo-armband has an Inertial Measurement Unit (IMU)
that consists of a 3-dimensional accelerometer that measures
the non-gravity acceleration, a 3-dimensional gyroscope that
measures the angular momentum, and a magnetometer that
measures orientation w.r.t. the Earth’s magnetic field. A 10-
dimensional vector M is acquired from the IMU at a sampling
rate of 50Hz. Each of these sensors acts like a function
f : T — R that maps a timestep to a real value. For a
duration of time, they form a sequence (represented as vector)
of real values corresponding to the digit written in that time.

The participants were asked to wear the device on the right
arm in accordance with the Myo-armband instructions®. To
avoid fatigue and priming, the data for each digit was collected
in three phases. In Phase-I and Phase-II, 3 iterations of every
digit were conducted. Phase-III consisted of 4 iterations.

Due to unusual vibrations in the Myo-armband during the
data collection process, 30 data samples were visualized using
Pewter and removed manually from the dataset. Hence, the
final dataset contained 1270 samples in total.

IV. AIRSCRIPT: THE PRESENTED APPROACH

To generate documents in air we propose a two phase
process that breaks down the problem into two different tasks:

1) Phase-I (2-DifViz): the hand movements are converted
into a realistic visualization of the digit written in air.

2) Phase-II (HDRA): handwritten digits in air are recog-
nized using a fused classifier.

Figure 3 shows the complete workflow of AirScript, in
which the raw IMU data from the Myo-armband is processed

“For example, https://www.leapmotion.com/

Shttps://github.com/sigvoiced/pewter

Ohttps://s3.amazonaws.com/thalmicdownloads/information+guide/important-
information-guide-v03.pdf
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Fig. 3. The architecture of the proposed HDRA fusion model. The colored dots on the top-left show the sequence of hand movements. The red dot represents
the starting point, the blue dot represents an intermediate point and the green dot represents the end of the hand movement. A sequence of x,y coordinates
representing the user’s hand movements is extracted from the raw IMU signals using 2-DifViz. These features are projected onto a 2D plane, forming the
digit the user drew, and fed to a Convolutional Neural Network (CNN). They are also post-processed and fed to a Gated Recurrent Unit (GRU) Network.
Additionally, the raw signals are standardized and fed to a separate GRU Network. Finally, the output of the three classifiers is fused to produce the final
prediction. 2-DifViz is the Visualization module of AirScript (Phase-I), and the CNN, GRU-NET-1 and GRU-NET-2 compose its recognition module (Phase-II).

using 2-DifViz and a signal standardization pipeline. The
processed data is then fed to a recognition module consisting
of three classifiers. Each of these classifiers provides a list
of ranked results. These are then fused and a final prediction
is generated. Because the mistakes committed by the three
classifiers are generally different, this fusion was found to
improve the robustness of the model.

A. Myo-Armband

The Myo-armband is an unobtrusive sensor device easily
available and integrable to several platforms through its off-
the-shelf SDKs. Its Inertial Measurement Unit (IMU) senses
the orientation, acceleration and angular velocity of the arm
at any given moment. Additionally, the arm’s muscle activity
is captured by 8 Electromyography (EMG) pods embedded in
the device.

Let D = {d; | i = 1,...,n} represent our HDRA dataset,
where n is the number of data instances in D (in our case
1270). Each data instance d; = (M,;,&;, L;) is a tuple
consisting of a time-series M representing the IMU sensor
data, a time-series &; representing the EMG sensor data, and
a class label L; € {0, ...,9}. For our models we use only the
IMU sensor data. Every M; = {/\/lgl),/\/ll@)7 ...,Mgm} is a
time-series consisting of 7; time-steps (i.e., |M;| = 7;), and
each element M = [al g q!]. The vectors a! € R?
and g! € R3 are the 3 axes of the accelerometer and
the gyroscope, respectively. Similarly, q¢¢ € R?* denotes a
quaternion representing the orientation.

B. 2D Differential Visualization (2-DifViz)

To generate realistic and reproducible visualizations of the
handwritten digits in air, we developed a method called 2-
Dimensional Differential Visualization (2-DifViz). We use the
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set of steps below’ to get coordinate sequences C;, henceforth
referred to as 2-DifViz features. These sequences are then
plotted on a 2D canvas and are interpolated to smoothen the
curve and make the visualizations continuous.

o STEP-1 (Rotate Frame of Reference): g§ holds the
angular velocity of the user’s arm in degrees per second in
the three dimensions: dx (pitch), dy (yaw) and dz (roll).
These values are in the frame of reference of the arm
on which the Myo-armband is worn. We assume that
the digits were written on an imaginary canvas in air,
to which we refer as “the world frame of reference”,
and hence we rotate g! and bring it to “the world frame
of reference”. Let (q¢)~! denote the inverse of qi. The
rotated vector is therefore:

ey

where g! is reinterpreted as a quaternion whose real
coordinate is 0, g§ is the rotated gyroscope vector, and x
denotes the Hamilton product.

« STEP-2 (Extract Pitch and Yaw): we construct the vec-
tor g! = (dat,dy?) from &', where each dz denotes the
pitch and each dy denotes the yaw in a given time-step.
We ignore the roll as we are concerned with mapping the
hand movements to a 2-dimensional vector sequence that
we can visualize as realistic digits.

o STEP-3 (Determine the Gain): a gain factor K is
calculated, that maps the arm movements to pixels on the
imaginary canvas. K is determined by hyperparameters
like sensitivity, acceleration and pixel density and acts as
a scaling factor for g.

g =qxglx(q) "

TThis pipeline was built upon the mouse controller application (http:
//developerblog.myo.com/build- your-own-mouse-control-with-myo/) ~ devel-
oped by Thalmic Labs (https://www.thalmic.com/).
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o STEP-4 (Calculate Sequence of Differentials): g} is
multiplied with K and a frame duration F' to scale
the hand movements on a 2-dimensional canvas and
smoothen the transitions on it.

Gi=gixKxF 2

Here §; = {g},32,...,g]* } is a sequence of 2-dimensional
vectors that contains the number of pixels to move on the
imaginary canvas at every time-step. Since g¢ consists of
pixels, dx and dy are converted into integers.

« STEP-5 (Create Coordinate Sequences): a sequence of
2-dimensional coordinates C! = {(z},y}), ..., (', y[")}
is created from g!, where = and y are coordinates on the
horizontal and vertical axis of a 2-dimensional Cartesian
plane, respectively, and |C;| = 7; + 1. To create C’l-(t) we
start by setting C} = (0,0). Then, V¢t € [1,...,7;] and
gt = (dat, dyt) we set CIH = (xf + dat, y! + dyt).

Figure 2 shows visualizations of handwritten digits in air

using 2-DifViz. This canvas is then stored as an SVG or PNG
file. These visualizations were used to create a set 1 = {I; |
i = 1,...,n} of images, where n is the number of instances
in the dataset.

C. GRU Networks

Since Recurrent Neural Networks (RNN) using LSTM have
shown state-of-the-art performance for handwriting recogni-
tion [12]-[14], we chose to use a similar architecture with
a variant of LSTM called Gated Recurrent Units (GRU) for
HDRA. RNNs with GRU have fewer parameters than LSTM
and their performance is at par with LSTM Networks [16].
RNNSs are able to learn from sequential data and incorporate
contextual information, making them a best fit for the HDRA
task.

GRUs use gating units as follows [16]:

hl = (1—2)hj_, + 2] 3)
2 =0 (W + Ushyy)’ )
71{ = tanh (Wxy + 1 © (Uht,l))j 5)
=0 (Wyay + Uphy_1 )’ (©6)

The activation h{ (Equation (3)) of a GRU at time ? is a linear
interpolation between the previous activation h]_; and the
candidate activation fzi, computed by Equation (5), where 7
is a set of reset gates and © is an element-wise multiplication.
The update gate z] decides how much the GRU updates its
content, according to Equation (4). Finally, the reset gate r]
controls how much of the previously computed state to forget
and is computed by Equation (6).

The formation of digit in air is dependent on the past as well
as the future context and needs to be classified only after the
whole digit has been formed. Therefore, we further extended
the GRU by combining it with a Bidirectional RNN [17]
resulting in a Bidirectional GRU, known to give better results
than unidirectional RNNs [18]. Two GRU networks were
trained using the following architectures:
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1) BGRU Network (GRU-NET-1): The 2-DifViz features
(i.e.,, C;) are post-processed in the following way:

o STEP-1 (Smoothing): to remove noisy points, each C}
was smoothed by averaging adjacent points using the
following equation [19]:

ot <m§—2+...+mg+2 y§—2+...+yf+2>

! 5 )

o STEP-2 (Redundancy Removal): points too close to
each other can convey noise in the direction of movement
of a stroke [19]. The following equation was used to
calculate a threshold A, and adjacent points with A <5
were removed:

A=yl =

o STEP-3 (Standard Scaling): C! is whitened by scaling
its values by its mean and standard deviation.
Ct = M @)

Oc

Where p. and o, are the mean and standard deviation
of C}, respectively. This helps in removing the offset
of the sequences by making p = 0 and normalizes the
fluctuation by making o = 1.

o STEP-4 (Interpolation): all coordinate sequences C; are
linearly interpolated to the same length \a\ =100

The newly generated C; are used to train a 1-layer BGRU

network with 32 output units with a sigmoid activation func-
tion. A softmax output layer was used with 10 units for the
10 digits. We trained the network using Stochastic Gradient
Descent (SGD) over the training data for 150 epochs with a
categorical crossentropy loss and the Adam optimizer with a
learning rate of 0.001, B; = 0.9, 32 = 0.999, ¢ = 10~% and
decay of 1076,

2) BGRU Network (GRU-NET-2): All the raw M; are

standardized in the following way:

o STEP-1 (Absolute Scaling): all M! are scaled to a range
of [-1,1].

o STEP-2 (Resampling): a set T = {r; | 1,...,n} is
defined such that n = |D| and 7; is the number of time-
steps in M;. Let t,,4, be the maximum of all values in
T. For each d;, the time-series M is resampled such that
| M| = tmaq. This is done to normalize the length of the
sequences and remove jitter.

We trained a 1-layer BGRU on the standardized M. The
number of units, activation, output layer, loss and optimizer
used were the same as the GRU-NET-1.

D. Convolutional Neural Network

Convolutional Neural Networks (CNN) have shown state-
of-the-art results in classifying images [20]-[22]. Since we
were able to convert the handwritten digits in air into realistic
visualizations (images), we could reduce the HDRA problem
to an image recognition problem. CNNs have outperformed
other existing models for the MNIST digit recognition task



TABLE I
MEAN AVERAGE ACCURACY AND STANDARD DEVIATION OF THE PERSON
DEPENDENT EVALUATION.

TABLE II
MEAN AVERAGE ACCURACY AND STANDARD DEVIATION OF THE PERSON
INDEPENDENT EVALUATION.

Classifier Avg. Mean Accuracy (%) | Std. deviation
HMM 75 229
KNN 71.5 16.9
NB 75.3 21.3
SVM 81.67 13.9
CNN 95.1 5.9
GRU-NET-1 84.4 13.4
GRU-NET-2 88.7 10.6
Fusion Model 96.7 0.02

Classifier Mean Accuracy (%) | St. Deviation
HMM 15.8 5.8
KNN 13.6 8.8
NB 31.7 13.6
SVM 19.7 13.8
CNN 84.6 11.2
GRU-NET-1 67.4 10
GRU-NET-2 87.6 104
Fusion Model 91.7 0.06

[20] so we chose to use CNNs for HDRA using 2-DifVis. We
used a transfer learning approach [23] for re-training a pre-
trained CaffeNet® [24] on the image set I. The output layer of
the CaffeNet was replaced with a softmax layer with 10 units
and the network was re-trained using the Adam optimizer with
a learning rate of 0.0001, 8, = 0.9, B2 = 0.999 and € = 108
using a categorical cross entropy loss.

E. Fusion Model

By using GRU-NET-1 and GRU-NET-2 we were able to
capture the temporal information from the preprocessed co-
ordinate sequences and IMU data. With the CNN we could
acquire a spatial representation of images generated by 2-
DifViz. This motivated us to extend our model and fuse these
three modalities to capture the spatio-temporal representation
of the raw IMU data. To do so, we fused the ranked results
using Borda Count, whereby we extracted the ranked class
labels from the three classifiers and decided a final class label
for the input. Since the modalities are independent of each
other, the sources of errors are independent too. This makes
our fusion model robust and a best fit for the HDRA task.

V. EVALUATION

We evaluated our method using a person dependent test
and a person independent test, as described in the sections
below. To benchmark the components of the fusion model
we compared their accuracies with a Hidden Markov Model
(HMM), a Support Vector Machine (SVM), a Naive Bayes
(NB) classifier and a K-Nearest Neighbor (KNN) classifier.

A. Person Dependent Test

To perform a person dependent test, the data from a single
participant is used to train and evaluate the model. We split
the person’s data into 5 stratified folds. Each fold consists of
a training set and a test set. We repeat this process for 10
randomly selected participants. We train and evaluate all our
models on all the folds from each of the selected participants.
The average accuracy on the 5 folds for each participant is
recorded and a mean of these averages is calculated, as well
as their standard deviation. Table I shows the results for all
the evaluated models.

8https://github.com/B VLC/caffe/tree/master/models/bvlc-reference-caffenet
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Fig. 4. Confusion matrix for HDRA using the fusion model.

B. Person Independent Test

We use this test to evaluate the robustness of a classifier,
independently of any specific person. In this setting, we
withhold the data of a randomly selected participant to be used
as a test set, while the rest of the data is used as a training set.
This is repeated for 10 different participants and the average
accuracy is recorded. Table II shows the average accuracy of
all the evaluated models.

C. Analysis

1) Performance Analysis: In both the person dependent
and person independent tests, the fusion model outperformed
all the baseline models with a substantial margin. The CNN,
GRU-NET-1 and GRU-NET-2 were the top 3 classifiers con-
sidering the average accuracy. Thus, we chose to use them
in our fusion model, which resulted in an improvement in
accuracy. Even though the CNN, GRU-NET-1 and GRU-NET-
2 had an accuracy of more than 80%, they had a standard
deviation of more than 10. However, fusing them together
resulted in a drop in standard deviation, making the fusion
model much more robust.

We observed that the results were better in the person
dependent test than the person independent test. This behavior
can be attributed to each person having different speed and
style of writing the same digits.
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2) Digit Analysis: We analyzed the confusion matrices of
the fusion model and its three components individually. For
doing so, we relied on the 2-DifViz visualizations of the hand
movements of the participants. This analysis helped us in
improving the classifiers and observing the subtle problems
in digit recognition. The confusion matrix of the fusion model
is shown in Fig. 4. The confusion matrices of the different
classifiers allowed us to have an insight on what errors they
were committing. For instance, digits 1 and 2, as well as 1 and
4 were confused in GRU-NET-2, possibly because of similar
initial hand motion. Similarly, the CNN tended to confuse
digits with loops (like 6, 8 and 9). Fusing the models together
allowed us to overcome these difficulties and achieve a higher
robustness.

VI. CONCLUSION AND FUTURE WORK

We introduce a novel approach called AirScript for creating
documents in air using a Myo-armband. For doing so, we split
the problem into a visualization task (2-DifViz) and a hand-
writing recognition task (HDRA). We show a proof of concept
for the latter by proposing a classifier fusion model which
achieves a recognition rate of 91.7% on a person independent
evaluation, and 96.7% on a person dependent evaluation. For
the visualization task we introduce a new method called 2-
DifViz, which converts the hand movements into realistic
visualizations on a 2D canvas of the digits written in air, that
can be stored in an SVG or PNG format. This shows the
potential use of AirScript in many application areas such as,
smart factories, smart offices, smart class rooms, virtual reality
games and even augmented reality environments. We envision
AirScript to be used in a smart classroom environment using
augmented reality, where people can scribble anything as air
notes and visualize these notes in the form of handwriting, thus
giving the process of creating a new definition. AirScript uses
a Myo-armband, our method is mobile and easy to integrate on
multiple platforms, while still providing the user with freedom
of movement.

We plan to extend AirScript by adding a handwriting recog-
nition model using Sequence to Sequence models or LSTM
Networks with Connectionist Temporal Classifiers, along with
a language model. We plan to use Deep Generative Models for
improving the visualizations of handwriting in air and making
them more realistic.
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