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_aep.1| 2D and 3D Action/Gesture recognition: a challenge ? 8

= Introduction: understand the problematic of gesture interaction
=« What is a gesture: the different natures of gestures

= Human Computer Interaction: new opportunities

= Gesture recognition: Isolated Gestures Classification (segmented)
= Overview of the task: recognizing isolated gestures (The overall pattern recognition process)

=« Machine Learning and Pattern recognition: a short overview of some existing techniques

= Gesture classication: “Time-series” approaches
= Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

= Gesture recognition in real-time streaming (non segmented)
= Overview of the task: recognizing in real-time streaming

= Non-segmented Action Recognition: Example of one approach [Boulahia 2017]
= Presentation of experimental results using Kinect and Leap Motion

= Early Gesture recognition
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_aap.1| 2D gesture sensors: pen-based and touch-based gestures 9

= Pen-based gesture interaction

= Device platforms
= Smartphone
= Digital Pen
= Tablet PC
= Electronic Whiteboard
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_aep.1 | 2D gesture sensors : pen-based and touch-based gestures 10

= Touch-based gesture interaction (touch screen)
= Multi touch based interaction (ex: whiteboarding solution...)

= Multi-user based interaction (ex: surface table, surface Hub...)
= Tracking technology: capacitive touch screen display,ultrasound, infrared...
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_xen.1| 3D gesture sensors: whole body gestures recognition 1

= Dynamic whole body gestures recognition

= Wide range of application fields: such as video
surveillance, sport video analysis, human-
computer interaction, computer animation and
even health-care.

= Two main groups of approaches
= RGB + Depth image recognition

= Skeleton-based action recognition

: RGB
= Sensor technologies
= Emergence of Kinect
like sensors (2010) Depth

Skeleton
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_aap.1| 3D gesture sensors: Hand Gesture 12

= Dynamic hand gestures
= using skeleton joint data

= Sensor technologies
= the Leap Motion device

= Intel's RealSense depth-sensing 3D
camera

= Depth sensor + camera
= Few existing applications
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_awp.2| 2D gesture inputs: Pen-based and touch-based gestures 14

= On-line

|
= Data input :
v

(%, y, time, pressure) / signal : sequences of 2D points

‘ Pen-up
strokes trajectory
0 X
Ao ot : s /’ e -
O*\ B : ‘: N ® - .:‘ S N : Pen
Sl i E o i iy o down
Pen-up \ T g e aE
oI~
vy ‘ Per?'down D ~~..i%point: (x, y, time, pression )
trajectory T
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_aep.2 | 2D gesture inputs: Multi-stroke and Multi-touch

= Multi-stroke and Multi-touch Gesture

a/ Multi-stroke Multi-touch

(sequence of strokes) (several strokes in //)
1 1 S A 1
i, 2 |
da 2 1o S3 | .' 1
3 P — L T T 1S,
1 1 $ > 1 1 >
6]__4/ ' No Time overlap ! Time overlap t

= Several trajectories to consider

% Strokes are synchronized or partial
synchronized

- Shape
- Spatial relation
- Temporal relation

% Strokes are written in sequence
- Shape
- Spatial relation
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_oep.2 | 3D gesture inputs

= Two main groups of approaches:
= RGB-D based => input data = a sequence of frames

= Skeleton based
= By using Kinect, LeapMotion
= a sequence of 3D points = trajectory, angular information...
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_aen.2| Inputs: Trajectories / One generic approach for 2D/3D gesture recognition?

= 3D gesture

= A robust approach : Skeleton based approach

= Capture the essential structure of a subject in an easily understandable way
= robust to variations in viewpoint and illumination

= skeleton data consist in trajectories of the body joints

= Trajectories: a unified way to consider gestures
= Same data type: trajectories or signal
= 3D gesture trajectories may be processed similarly to 2D trajectories

= Moreover from Graphonomic point of view
= 3D and 2D gestures : a human is the performer
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_cep.3 | Gesture interaction

= General Introduction based on [Zhaoxin Chen 2016]
= Touch gesture examples[1]

[1] Touch gesture reference guide, Luke Wroblewski, http://www.lukew.com/

© eric.anquetil@irisa.fr



_cep.3| Gesture interaction: Mono Stroke

= Development of gesture interaction

o >
0 Mono touch Number of strokes
Mono stroke

Tap Handwritten character
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_cap.3 | Gesture interaction: Multi-Stroke

= Development of gesture interaction

@ O >

0 Mono touch Mono touch Number of strokes
Mono stroke Multi-stroke

SihQ% : L)_’LE%

Math symbol lcon Chinese character
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_cep.3 | Gesture interaction

= Development of gesture interaction

@ >
Mono touch Mono touch Number of strokes
Mono stroke Multi-stroke

,/
,/
’

>4
Multi-touch

Pinch Rotate
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_aep.3 | Gesture interaction: Direct and Indirect commands 23

= Two types of interactions

% = a

Direct manipulation Indirect command
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_aep.3 | Gesture interaction: Direct and Indirect commands

= What if a user wants to use the multi-touch gesture to make a command instead of manipulation.

< > > Select and copy

o \/ j‘> Paste at somewhere

How to recognize a multi-touch gesture as indirect command?
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_oep.3 | Gesture interaction: Direct and Indirect commands

= Is it possible to merge these two interactions into a same interface

AV

Pinch Paste

Direct manipulation Indirect command

[ How to support these two interactions in a same context? ]
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_cep.3 | Gesture interaction: multi-touch gestures

= Open more possibilities to use multi-touch gestures
= complex gesture for indirect commands

= mix the direct manipulation and indirect command

@ >

Mono touch Mono touch Number of strokes

Mono stroke Multi-stroke

""""""""" Multi-touch
Multi-touch
direct &&
indirect ° \/
Pinch Paste
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_cep.3|  Gesture interaction: Multi-user interaction

= Multi-user interaction
= to deal with several gestures in the same time

Number of users

Mono stroke

A
A= = mm mm Em Em Em Em Em Em o Em E— S Em Em = = 7
7 s . . 7 i ’ :
e Multi-user - |
7 7 I
el e D 4 .
! 1
: o— >
! 0 Mono touch | Mono touch Number of strokes
I i Multi-stroke
]

’

_C/ Multi-touch

Multi-touch

direct &&
indirect

27
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_aw.3| Perspective : future of Pen and Touch interaction [Pfeuffer CHI 2017] 28

= Example of novel way of
interaction: Thumb + Pen
interactions

= Support simultaneous pen and
touch interaction, with both
hands

= allow changing the mode of
the pen

= changing the mode that
applies to the pen conventions.

= additional navigation
functionality

[Pfeuffer 2017] Thumb + Pen Interaction on Tablets
Ken Pfeuffer, Ken Hinckley, Michel Pahud, Bill Buxton
Microsoft Research, Redmond, WA, USA

Interactive Systems, Lancaster University, UK
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_awp.4 | Intra/Inter —class: shape variabilities 30

(

S L e

Within-class . ~
variability \ JJ,{J %(,fp q
. -
_— g\ﬂ

-~

Intrinsic stable property

PATTERN modeling
RECOGNITION

Between-class
confusion

Introduction of discriminating
knowledge
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_«wn4| Intra/Inter —class: shape variabilities

= Writer dependent versus Writer-independent recognizer

= Resource cost
= Ambiguity of characters between different writers
= No ambiguity for each writer

= [Mouchere07]

31
u \' r n h

Writer 1 U\\W
Writer 2 /[/t V\ /G(

N
Writer 3 VU W\ a8
Writer 4 /( \(\ \ /R
Writer 5 R m h
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_aep.4 | Intra/Inter —class: temporal and spatial variabilities

= Temporal variability

= Occurs when subjects perform gestures with
different speeds

= Inter-class spatial variability

= Different gesture classes are likely to result in
different amount of displacements

= Intra-class spatial variability

= Same action class with different amount of
displacements

= In some applications, capturing such intra-class
variabilities might be desirable as it brings additional
information and could allow for different
interpretations of the same class of gesture.
Othewise need to must be neutralized.

[Said Yacine
Boulahia 2017]



_oep.4 | Gesture Recognition: a transversal challenge

Application

Human computer
interaction

Pattern recognition

Animation

3D/2D actions

Map view

Document composition

Mono touch & Multi-touch
Direct & Indirect command
Multi-user interaction

Isolated multi-touch gesture recognition
Non segmented gesture recognition
Early recognition for touch gesture
Multi-user gesture segmentation and
recognition
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_aans | 2D and 3D Action/Gesture recognition: a challenge ? 35

= Gesture recognition: Isolated Gestures Classification (segmented)
= Overview of the task: recognizing isolated gestures (The overall pattern recognition process)

=« Machine Learning and Pattern recognition: a short overview of some existing techniques

= Gesture classication: “Time-series” approaches
= Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

= Gesture recognition in real-time streaming (non segmented)
= Overview of the task: recognizing in real-time streaming

= Non-segmented Action Recognition: Example of one approach [Boulahia 2017]
= Presentation of experimental results using Kinect and Leap Motion

= Early Gesture recognition
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_oms| Overview of the task: generic flowchart

<+ Human action recognition



_aa.s | The overall pattern recognition process (segmented gestures) 37
= The overall process for segmented dynamic gesture recognition (hand gesture illustration)
Normalization

Amorphological
trajectories

Segmented
pattern
reprentation

Raw

trajectories »

» Class label

-Zoom
-Shake
-Swing
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_awp.s | The overall pattern recognition process (segmented gestures): Pattern Recognition 38

= ' Time-series” approaches

« Input : Handle the sequential data with variable lengths

Elastic Matching (Dynamic Time Wrapping, DTW) -2 similarity
between two sequences
Hidden Markov Model (HMM)

Recurrent neural networks (RNNSs), Time, Space Delay Neural
Network (TDNN, SDNN)

long short-term memory (LSTM) network

= Statistical” approaches
= Input : Feature vector (low level representation)

= Recognition system: Classifier (learning and generalization phase)

Support Vector Machine (SVM)
Neural Network (MLP, RBF,....), %

Fuzzy Inference System (FIS),

Decision tree, ... Q

=« Advantage: Quite easy to design, very accurate X2
Drawback: Black box system, difficult to optimize X1

Activation degree
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_awp.s | The overall pattern recognition process (segmented gestures):

= Structural” approaches

= Input
= Primitives - feature vector (high level representation)
= Based on fine analysis of the pattern
= Recognition system: Classifier (learning and generalization
phase)

Possibly the same classifier as “statistical” approaches
Fuzzy Inference System (FIS), Decision Tree, ...

= Advantage: transparent system, possible optimization
Drawback : more difficult to design

s Others

= K nearest neighbors (KNN) (without Learning phase ...)... need
to define a distance (ex: DTW...)

= Hybrid Approaches : HMM + NN

M,

Pattern Recognition 39
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_cap.s | Gesture classication: “Time-series” approaches a1

= Many fields to consider time-ordered Series of Data:

= Motion/Gesture

= M. Morel, C. Achard, R. Kulpa, and S. Dubuisson, "Automatic evaluation of sports motion: a generic computation of spatial and
temporal errors”, Image and 'Vision Computing, vol. 64, pp. 67-78, 2017.

= M. T. Pham, R. Moreau, and P. Boulanger, "Three-dimensional gesture comparison using curvature analysis of position and
orientation,” in EMBC'10, pp. 6345-6348, TEEE, 2010.

= F. Zhou and F. D. la Torre Frade, “Canonical time warging for alignment of human behavior,” in Advances in Neural Information
Processing Systems Conference (NIPS), December 2009.

= Handwriting

= L. Guler and M. Meghdadi, “A different approach to off-line handwritten si8nature verification using the optimal dynamic time
warping algorithm,” Digital Signal Processing, vol. 18, no. 6, pp. 940-950, 2008.

= Mitoma, H., S. Uchida, and H. Sakoe. Online character recognition based on elastic matching and quadratic discrimination. in Eighth
International Conference on Document Analysis and Recognition. 2005. p. 36-40 Vol. 31.

= Niels, R. and L. Vuurpijl, Dynamic time warping adaplied to Tamil character recognition. Eighth International Conference on
Document Analysis and Recognition, 2005: p. 730-734 Vol. 732.

= Biological systems

= B. S. Raghavendra, D. Bera, A. S. BoEardikar, and R. Narayanan, “Cardiac arrhythmia detection usin%I d¥_nami_c time warping of ECG
IIJEegltEs |2n0?-1healthcare systems,” in IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-6,

= Audio (speech or music) signals.

= G. Kang and S. Guo, “Variable sliding window DTW speech identification algorithm,” in Ninth International Conference on Hybrid
Intelligent Systems, pp. 304-307, IEEE, 2009.

o Ningf_ Hu, R. Dannenberg, and G. Tzanetakis, “Polyphonic audio matching and alignment for music retrieval,” in IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, pp. 185-188, IEEE, 2003
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_cap.s | Gesture classication: “Time-series” approaches 42

= Time-series challenges

=« Difficulties: length variability
= requiring their temporal alignment as a pre-processing step

= T0o learn a Model

= to derive a single model from a set of signals corresponding to several
instances of the same physical process.

= Main Simple Approaches

= Hidden Markov Model (HMM)

= Dynamic programming (DP) / Dynamic time warping (DTW)

[Morel 2017] Marion Morel, Catherine Achard, Richard Kulpa, and Séverine
Dubuisson. Time-series averaging using constrained dynamic time warping with
tolerance. Pattern Recognition, 2017.
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_awp.7 | Classification: Hidden Markov Models (HMM) 44

= Hidden Markov Models: approach inspired from speech recognition
= deal with sequence of observations

= find application in practically all ranges of the statistic pattern recognition

= HMMs

= Generalization of homogeneous Markov chains with a stochastic process on two stochastic processes

= Sequence of the states is produced by the transition probabilities a;
= At each state is associated an emission probability b;(o)

© eric.anquetil@irisa.fr



_aap7 | HMM: Definition 4

= Definition

= An HMM is a double stochastic process
= an underlying stochastic process generates a sequence of states

1, 49 - > 4p --- 4p

Where ¢ : discrete time, regularly spaced T : length of the sequence
q, € 0 =19, 95 ... qy/ N : the number of states

= each state emits

an observation according to a second stochastic process :
0, € O={o, 0, .0, M : number of symbols
0, : a discrete symbol

= Specification of an HMM L = (IT, A, B)

s A - the state transition
probability matrix

a; = P, =Jlg, =)

= B- observation probability distribution bo b,

by = P(o, =9, = q)

s s S - M
» I1 - the initial state distribution b, >0 and Z b =1
=1 v
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_aep.7| HMM: example

= Example of non ergodic model (left-right model)

= 3 states + 1 starting state ¢g° + 1final state qf

= g° and g are non emitting states
= Assume there are 2 symbols to observe O = {o'=a, 0*=b}

=« Example of possible observation sequence: “ab b b”

0.2
- 0.7
10

01

Initiale state
probabilities

0 08 01 01
0O 0O 06 04
0O 0 01 09

0O 0 O

Transition state
probabilities

1

P(ala*)
B=|04 06

i@y | PO

Observation symbol
probabilities

[C. Viard-Gaudin]

46
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_aep.7| HMM: example

= The most probable state sequence is:
= 0%, @° resulting in the symbol

sequence “bb”.

= But this sequence can also be
generated by other state sequences,

such as g}, g°.

= Computation of the likelihood of an observation sequence:
= Given X = “aaa” compute the likelihood for this model : P(aaa | )

= The likelihood P(X | 1) is given by the sum over all possible ways to generate X.

State Init Obs a| Trans | Obs a | Trans | Obs a | Trans Joint

sequence probability
q'q%q® 0.2 0.8 0.8 0.4 0.6 0.1 0.9 0.0027648
q'q%q® 0.2 0.8 0.1 0.1 0.1 0.1 0.9 0.0000144
q°9°q® 0.7 0.4 0.6 0.1 0.1 0.1 0.9 0.0001512

[C. Viard-Gaudin]

47
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		Obs a

		Trans

		Obs a

		Trans

		Joint probability



		q1q2q3

		0.2

		0.8

		0.8

		0.4

		0.6

		0.1

		0.9

		0.0027648



		q1q3q3

		0.2

		0.8

		0.1

		0.1

		0.1

		0.1

		0.9

		0.0000144



		q2q3q3

		0.7

		0.4

		0.6

		0.1

		0.1

		0.1

		0.9

		0.0001512



		

		P(aaa|) =

		0.0029304






_cep.7| HMM: basic problems 48

= The 3 basic problems for HMMs

= Problem 1 : Evaluate the probability of an observation sequence (Forward-Backward algorithm)

= Given O = (01,02, ... oT) and a model A
= How to efficiently compute the probability P(O | A) of a given observation sequence?

=« Problem 2 : Find out the most likely state sequence
(Viterbi algorithm)
= Given O = (01,02, ... oT) and a model A

= how to efficiently find the optimal state sequence for which the probability of a given observation O =
(01,02, ... oT) is maximum.

= Problem 3 : Learning
(Baum-Welch algorithm)

= Given a set of training sequences {O = (01,02, ... oT)} , how to efficiently estimate the parameters of
a model A = (IT, A, B) according to the maximum likelihood criterion.
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_aap.7 | HMM: Viterbi algorithm 49

= Viterbi algorithm: Solution by Dynamic Programming
= Define 3,(i) the highest probability path ending in state ¢’

= &(i) = max P(q,,9y,...,0:=q' , 01,05,...0; | 1)
q11q21---lqt—1
= By induction:
. 0py1(K) = max [8,(i) ay] . b(0,1), with 1<k <N
1<i<N
. Memorize ¥, (k) = arg max(5.(i) ay)
1<i<N

01 02 03 04 05 06 © eric.anquetil@irisa.fr




_aap.7 | HMM: Viterbi algorithm

= Viterbi algorithm: Solution by Dynamic Programming
1. Initialization

For 1<i<N {&,(i) = m x b(0,); ¥,(i) = 0;}
2. Recursive computation
For 2<t <T

For 1<j <N
6¢(J) = max [8.,(i) a;] . bj(0y);
1<i<N
Wi(j) = arg max(S..,(i) a;);
1<i<N
3. Termination
P* = max[5(i)];
1<i<N
q*r = arg max[5:(i)];
1<i<N
4. Backtracking
For t=T-1 down to 1 { g*. = Y(q*.;1); }

P* gives the required state-optimized probability
* =(q,*%,9,% ..., g7™) is the optimal state sequence

e — —_————

50
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51

_aep.7| HMM: discrete versus continuous

= Different types of HMMs on the basis of the kind of symbols:

= Discrete HMMs

= Number of possible symbols,
probability of the symbols in matrix

= quantization errors at boundaries
= relies on how well Vector Quantization
(clustering) partitions the space

= sometimes problems estimating
probabilities when unusual input
vector not seen in training

= Continuous HMMs

= Probabilities of symbols
in continuous form; distribution density

Example: the emission probability

Is expressed with mixtures of Gaussians.

_:4:}

\|"é "_f-jj?:-"'
et

.______.-:,

r____ _ﬁ_-- ol |____ _8__

R ‘gf

JYy)yyr )
cCrececrecc e
W ar w o a w w t  o

Ccr e s

SR IS R A R

Sequence of primitives
[Viard Gaudin]

Discrete HMM
5 clusters
[Viard Gaudin]

[Juan 04]
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_aap.7| HMM: example 52

= Another explicit segmentation : example of an on-line approaches

= Discrete Emission probability
= Sequence based on primitives

[,

A9
. I. L I:_ : i L,
A g N\ terminaison
amorce bosse ligature
A bas hampe hampe boucle
0,6 - 60 corps boucle
D - - - - = - I3 - » [
Il A ", - - “‘ /" I| \'\ \\' //'-
L hampe boucle N N
I'-._Il =, . g ; SN
\ A e
\ S N 4 corps bosse 1 corps bosse?2
\ 4
amorce hampe trait
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_aan.7| HMM: for Speech 53

= Example of using HMM for word “yes"” [iohn-Paul Hosom 2009]

1 1 1 1 1
I Iy

b;(04)"0.6" b;(0,)'0.6 Hy(03)"0.6° b;(04)'0.4* 5,(05)'0.3* 5,(06)'0.3* H,(0,)'0.7 ...
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_aap.s| DTW : Introduction 55

e N\ —

| SN 1

Euclidean Distance “Warped” Time Axis
Sequences are aligned “one to one”. Nonlinear alignments are possible.

[M. Sridhar 07]
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_aap.s| DTW : Principles 56

= Principles
= Given: two sequences C: X{,X5,...,X, and Q: Yi,Y>,-/¥Ym
=« Wanted: align two sequences base on a common time-axis

K /\/\/\/ optimal

warping

path

e, ()

two time series Q and C, : / 1Y /]‘

length n and m respectively

. the result alignment
an (n*m) matrix is constructed to

store the distance between items in
= Conditions Q and C.

= Boundary conditions: We want the path not to skip a part

= Monotonicity: The alignment path does not go back in “time” index

= Continuity: The alignment path does not jump in “time” index

... A good alignment path is unlikely to wander too far from the diagonal
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_Chap.8| DTW : Algorlthm

= Dynamic programming

Time Series C

1 i
m |
-r [ 7
. 1
o | 8
g
&
S
N 1[e |
t i=j+r
d(1,1)

d(n, m)

57

d(i,j) = distance between Q & C; - -for instance (Q, - Cj)2

D(i, j) = distance cumulée

Initial condition:

D(L,1) =d(1,1)

D(L) = )y d(1,p) j =1..m

DY) =%, d(g,1) i =1..n

DP-equation:
D(i,]-1)

D(i, J) = min D(i-1,j-1)| + d(i))
D(i-1,))

Warping window: |—-r=i<j+r.

Time-normalized distance:
D(Q,C)=d(n,m)/c

c=n+m.

The warping path

P (K) = (@gp (K), 9, (K)
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_cep.s| DTW : Tllustration 58

= Alignment of two pairs of signals
= The matching between points of two pairs of signals

= Superimposition of the warping path (@,,) on the cumulative distances matrix D.

x(1) and
() 70) warping path (@,,)

[Morel, 2017]
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_aeps | DTW : Pattern Recognition using KNN (without learning)

= General Principle:
= Classification: Distance-based methods

=» K Nearest-Neighbor Classifier

”M\@

Gesture to recognize

v

l

g

Gesture samples:
One or several samples/class

v

KNN algorithm

[
»

results
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_acap.s| DTW @ Pattern Recognition using KNN (without learning) 60

= Basic idea

= Similarity can be described as distance in a specific space

= We can use DTW for estimate the distance between tow sequences (gesture)
= We can use a set of feature for estimate the distance between tow sequences (gesture)

= If suitable features were selected, that means

= patterns of the same class have similar features /2{2
= patterns of different classes have dissimilar features J})
= Need to define ﬁ 4_\: {\\ D 61

= A distance function d(z,y) for two arbitrary patterns x and y
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_acap.s| DTW @ Pattern Recognition using KNN (without learning) 61

= 1 Nearest-Neighbor Classifier (1NN)
= Assumption: for each pattern class C;, 1 < i < N exactly one (representative) prototype Z; is given.

= For an unknown pattern = the following classification rule is then valid:

k=argmin{d(z, Z;)|1 <t < N} = x € Cy,

= Task
= Assign « to the class C', to which the next neighbor 7, in the feature space belongs

= Reject = , if no unique minimum among d(x, Z;) exists or if the existing unique minimum is too large

= Nonparametric models
= requires storing and computing with the entire data set.

© eric.anquetil@irisa.fr



_axap.s| DTW : Pattern Recognition using KNN (without learning)

= Nearest-Neighbor Classifier

= Two pattern classes Ciand C: in the two-dimensional feature space

JANINVAN
AA AAA
A 42
A
AN
d(.’lﬁ,Zg)
o €T
@)
OOZI O d(val)
52000

62
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_acap.s| DTW @ Pattern Recognition using KNN (without learning) 63

= k-Nearest-Neighbor Classifier m=

= Observe the m next neighbors of a pattern «
from the sample set.

= Assign x to the classC'. , which occurs most
frequently under all m next neighbors.

= Common selection 3 < m <7

m= mn=

[Christopher M. Bishop]
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_acap.s| DTW @ Pattern Recognition using KNN (without learning) 64

= k-Nearest-Neighbor Classifier
= How to choose k

= Common selection 3 < m <7

= Define K by validation error rate

= Split the training and validation from the initial
dataset.

= lot the validation error curve to get the optimal
value of K.

= This value of K should be used for all predictions.

k=3

The training error rate: The error
rate at K=1 is always zero for
the training sample o

——Validation error

The validation error rate

© eric.anquetil@irisa.fr




_aeps | DTW : Pattern Recognition with creating models (Learning phase)

= A basic example to learn one or several model(s) for each class

Model for classe 2

Learning phase | :
for each class Ex: Learning by
Samples ... averaging @
% — or T
by clustering
(cf. chap. On clustering)

@ @ @ Gesture to recognize

ﬁ results

) |
KNN algorithm >

v

Generalisation
phase

Gesture models:
One or several models/class
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_axens| DTW : Pattern Recognition with creating models: Offline learning

Training phase

Q
| || Expert

training

dataset

Operation phase

Static classifier

Vs

Knowledge
base

_

1l

Learning alg.

Recognition alg.

(X, y7)

(X, yl)

i

Knowledge
base

)

1
1
1
1
IN '~
S 1
. S
b R 1
R |
‘\\\ ‘\.‘\
‘\.\\ ‘\\
[
e Y NV
1 s M
) 2
| e
1
1
1
1

e Limitations

Collecting large and exhaustive training dataset

)

User data can be much different from training data (different
contexts/habits/needs, time-changing, ..

Predefined and fixed set of categories/classes (included in the training dataset)

Application

66

[Almaksour 2011]

o
|| User
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_xen.s| DTW: Averaging of two signals to create a model

67

= First idea to average to signals
= Alignment based on the warping path ¢xy of length K

= Creation of two new aligned signals xK (k) and yK(k) with the same length K
= XK (k) = x(pxxy (k)) yK (k) = y(@yxy (k))

(1) and y(j)

;\\ [ =% X«(k) and yx(k) with the same length K
p AN !;" \n\ }---} :iK => result from the resampling of signals x(7) and y())
s \/ Il \/ i ' relatively to ¢. (k)
I /" \ / * =>» average signal is u(k) (in black).

(U \ | On drawback: the average signal is longer
~ Y than the two original signals
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_axen.s| DTW: Averaging of more than two time-series 68

= DTW Barycenter Averaging (DBA) /Petitiean et al. in 2011]
= A global averaging method for dynamic time warping.

= A fast algorithm that insures that the average signal will have a
reasonable length.

= The main steps of the algorithms:

= 1/ Randomly choose a signal x,(k) from the dataset to initialize the
average signal:

ulk) = xy(k), k=1,.., M, where M, is the length of x,(k).

« 2/ Iterate IT times the following steps:

= (a) Align all signals x;(k) on u(k) and compute warping paths ¢,

= (b) Update every point of the average signal u(k) as the
barycenter of points associated to it during step (a).
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_awp.s| DTW: Barycenter Averaging Algorithm (DBA) 69

Algorithm 1 DBA : averagingDT W

Require: xo(k) of length Mo, (xi(k))i=1..L of lengths M, IT [Petitjean et al. in 2011]
K= Mo, u(k) — xo(k), k=1,..,K [Morel et al. in 2017]
for it € 1...IT do

assocTab[k]=C,k=1...K
forlc 1...L do
(p,le N DTW(ILI) )Cl)
p — length(Qux)
whilep>1do
(k, ) — Qux (p)
assocT ablk] — assocT ab[k] U {xi(n)}
p—p-1
end while
end for
for kc1...K do
u(k) — mean(assocT abl[k])
end for
end for
return u(k), k=1,...,K
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_aans| DTW : learning category-specific deformations ... 70

. UCHIDA 2005
= Problematic [ » MOREL 2017

= Misrecognitions due to overfitting

s Idea
= TO category specific
deformations, called eigen-
deformations, to suppress
misrecognitions due to overfittng
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_xans| DTW : learning category-specific deformations ... 71

[UCHIDA 2005]
= Some results

« Estimating deformation tendencies

= Optimization based on DTW: learning geometric
distortions from several examples of the same
symbol [UCHIDA 2005]

= NB: Malahanobis Distance

= Euclidean distance can be re-written as a dot-
product operation

dp2(x,y) = (x =) (x —y)

= Mahalanobis distance between two vectors, x and
y, where S is the covariance matrix.

dy(,y) = (x = Y)TS 1 (x - y) -
O L,

X1
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_Chap.8| DTW .

For Gesture Analysis

= DTW can aIso be used for fine gesture analysis (virtual sportive coaching)

Learning phase
for each class

Gesture
analysis phase

Samples ...

>
»

Ex: Learning by
averaging

Model for classe 2

A class 2 Gesture to analyse

!

v

Gesture model
of the analysis class

Gesture alignment

by DTW

results

Quality of the
gesture
Fine feedback of
the user errors
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_awp.s| DTW : a parallel with Edit distance computation

= Levenshtein
distance

= Insertion
= Deletion
= Substitution

s Extension
= Fusion

= Division
= Pair
substitution

Entrée:
X = ry79...7, : une chalne de caractéres

Y = 1y1y5...y,, : une chaine de caracteres
d : une matrice de taille | X |+ 1 x |[Y| 4+ 1 permettant de stocker les résultats

intermédiaires

Initialisation d(0,0) =0
Pour i de 1 a n Faire
-d(i,0) =d(i —1,0) + 1
Fin Pour
Pour j de 1 a m Faire
-d(0,7)=d(0,j —1)+1
Fin Pour
Pour i de 1 a n Faire
" "Pour j de 1 & m Faire
Si r; = y; Alors
-d(i,j)=d(i— 1,5 —1)
Sinon

d(i,j) = min

Fin Si
Fin Pour
Fin Pour
Sortie: d(n,m)

______________ » Ilage — nuage
nuage — nage
nage — page

cle - deé Fj/ILL
aib — aile a4

- '|I
méanche — méandre Vyrnéeaowncr«

d(i—1,5—1) + 1 Co0t substitution
d(i —1,7) + 1 Colt suppression
d(i,j —1) 4+ 1 Colt insertion
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_aap.o | Segmented pattern representation 75

« A pattern refers to either a whole body action or dynamic hand gesture

Middle Index
Ring 5 4
6
Pinky
7
Thumb

» The overall process for segmented pattern representation and recognition is:

Segmented
pattern
reprentation

Raw
trajectories»

Amorphological
trajectories »

Overlapping
» segments

2

» Class label
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_xan.o| Skeleton based Action Recognition based on 3D gesture trajectories

= Addressing 3D action recognition in light of 2D representation

= 3D gesture trajectories may be processed similarly to hand-drawn trajectories
= Same data type (trajectories or signal)

= Graphonomic characteristic:

= @ human is the performer
= Well-established 2D experience

© eric.anquetil@irisa.fr



_awpo | Pre-segmented Action Recognition (Skeleton based) 7

= Pre-segmented Action Recognition:
Skeleton based and « statistical » approaches (using SVM)

= Example of two approaches [Boulahia 2017]:

= A first naive approach:

= 3DMM : 3D Multistroke Mapping

3D Multistroke Mapping (3DMM): Transfer of hand-drawn pattern
representation for skeleton-based gesture recognition. In 12th IEEE
International Conference on Automatic Face & Gesture Recognition (FG
2017), 2017.

= A more robust approach:

= HIF3D: Handwriting-Inspired Features for 3D action recognition

HIF3D: Handwriting-Inspired Features for 3D skeleton-based action
recognition. In 23rd IEEE International Conference on Pattern Recognition
(ICPR), 2016.
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_aap.o | Action representation by 3DMM: Kinect based patterns: whole body actions 78

.» Class label

-Run
-Shoot
-Joggle

= The overall process for segmented action representation and recognition is:

Raw Amorphologlcal Overlappmg Segmented
traj ectorles trajectories segments pattern
reprentatlon

3DMM
Features

© eric.anquetil@irisa.fr



_aep.o | Action representation by 3DMM - Segmented pattern recognition: synthesis 79

= Step 1: Pre-processing
= Goal: address the morphological variability issue

=« How: perform a normalisation of the raw trajectories according to
the subject morphology

= Step 2: Temporal split
= Goal: address the morphological sequencing issue (for instance if
two arms are raised at the same time or one after another, the
model should distinguish these two different patterns)

=« How: Extract partial segments from the whole pattern according to
overlapping sliding winodws
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_aep.o | Action representation by 3DMM - Segmented pattern recognition: synthesis

= Step 3: Features extraction

= Goal: build the pattern representation that should get the spatial
relationship between trajectories and the overall shape of the
produced pattern

= How: It consists in extracting a set of features on the whole pattern
and on the overlapping segments produced in step 2

= Step 4: Classification
= Goal: get the class label

= How: using a classifier (here SVM or MLP) trained on a training
set and then applied on each testing pattern

X1

80

X2

Activation degree
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_cep.o | Action representation by 3DMM: Step 1 - Pre-processing

= Addressing morphological variability before trajectory extraction

[Kulpa 2005] "Morphology-independent representation of motions for interactive human-ilike
animation”, 2005.
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_cep.o | Action representation by 3DMM: Step 2 - temporal hierarchy 82

= Modelling temporal information: Temporal Split Extraction
« Handling temporal sequencing

= Features are extracted according to two temporal levels (Level = 2)
= Number of features:

= Without selection : 4x49x3=588

= With selection: between 400 and 80

© eric.anquetil@irisa.fr



_aan.o| Action representation by 3DMM: Step 3 - : dealing with the set of 2D trajectories

= A first naive approach 3DMM using direct 2D projection [Boulahia 2016]

= Several strategies to consider all the trajectories
= (@) Mono-Stroke approach
= We loss the spatial dependencies
= (b) Multi-strokes approach
= Modelling spatial relationship

S

(\

\ >

z Q

(a)

Y/

(b)
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_aen.o| Action representation by 3DMM: Step 3 - Direct 2D features extraction

m [Delaye and Anquetil] “HBF49 feature set: A first unified baseline for online symbol recognition”, 2013.

Figure: Descripteurs dynamiques Figure: Descripteurs statiques
(positions de départ, longueur des (histogramme 2D, boite
strokes, inflexion) englobante)
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_aan.o| Action representation by 3DMM: Step 4 — statistical Learning and classification s

» Classification

Feature . L
: Classification
extraction
Feature extraction Classification
Discriminative features Use a feature vector
to assign the object to a category (class)
Here, 2 dimensions Feature space Here, discrimination of 3 classes: “a” “f", “"x”
Feature 1
N
.
S S o -
% o Aty . . -
Q\ A Kf oo e e e
~ %&% %ég/ﬂ ﬂ ’ - T .
I I B .
Z
ooy fﬁfmmbe c T o .
@ a X x A 7= =
AXLaa o >4 X "5 5o
LA Lo X Eadie T =
fﬁkﬂ a4 * C E
a x ¥ A 1
X X

(d eC'S'On bou nda rY) © eric.anquetil@irisa.fr



= Learning

= Finding all the parameters
of a classifier based on
a training set.

= Supervised learning: Generalization

= For the learning, a teacher provides

a category/class label for

each pattern in the training set

= Unsupervised learning: Clustering
= The system forms clusters or “natural groupings” of the input patterns

.' ,r __\

.'. . r
/e 1
(. ¥ i
g f

A \I i {(

Dnm '

-

Feature
extraction

> Classification

Learning

~

_xan.o | Action representation by 3DMM: Step 4 — statistical Learning and classification s

2 P,

=,

.. p
//__..,/ -

(% i

_ /Tfj — - Xf

Feature space

Clusters of similar feature vector
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_xan.o| Action representation by 3DMM: Step 4 — statistical Learning and classification &

= Learning and generalization capacities

= Learning

= consists of presenting an input pattern and modifying the network parameters (weights) to reduce
distances between the computed output and the desired output

—

Features /

Input data base Classifieur
= Generalization / Feedforward
= consists of presenting a pattern to the input units

and passing the signals through the network
in order to get outputs units

0000

classes

v

" output
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_xan.o | Action representation by 3DMM: Step 4 — statistical Learning and classification s

= Learning: Number of features
= For each temporal windows: 49 features [HBF 49] x 3 projections = 147

= 4 temporal windows: the total length of features
588 (147X1 + 147X 3).

= Feature selection:

= To limit redundancy
between 400 and 80 | l

1 t=T

Features /

Input data base Classifieur

OO0

classes
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_aep.o | Action representation by 3DMM: Some results on the HDMO5 dataset

= HDMO5 dataset

« HDMO5 is an optical marker-based dataset

M. Miller, T. Réder, M. Clausen, B. Eberhardt, B. Krtiger, A. Weber: Documentation Mocap Database HDMO5.
Technical report, No. CG-2007-2, ISSN 1610-8892, Universitat Bonn, June 2007.

= Contains around 100 motion classes including

= various walking and kicking motions, cartwheels, jumping jacks, grabbing and depositing motions,
squatting motions and so on.

= Each motion class contains 10 to 50 different instances of the same type of motion

= Experimental Protocol
= Evaluation with 11 motion actions.

= The actions are performed by 5 subjects, while each subject performs each action a couple of times ;
= this suggests a set of 249 sequences.

L1 'LJ_,}'
= Testing protocol L)) Ll LA L ,' J,L#
o0 R AT CP R
= 3 subjects for learning (142 instances) [ A ‘ % H\#'.. &6 ) S>(>?
i i { | | 1 ||
= 2 subjects for testing (109 instances) ) L0 et Ll

= Cross-subjects validation

© eric.anquetil@irisa.fr



_cap.o | Evaluation / Validation: Cross-Validation %

= Cross-Validation: K-fold
= Successively setting apart a block of data (instead of a single observation)

Data

R

Test set Test set Test set Test set
Y

Training set
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_aan.o| Some results of 3DMM approach on the HDMO5 dataset

= Results (HDMO5 dataset)

Method Authors & Year #Features Reco. rate (%)
Dynamic Time Warping [Reyes et al., 2011] - 82.08
MIJA/MIRM + LCSS [Pazhoumand-Dar et al., 2015] - 85.23
SMIJ + Nearest neighbour [Ofli et al., 2014] - 91.53
LDS + SVM [Chaudhry et al., 2013] - 91.74
Skeletal Quads + SVM [Evangelidis et al., 2014] 9360 93.89
Cov3DJ + SVM [Hussein et al., 2013] 43710 95.41
BIPOD + SVM [Zhang and Parker, 2015] - 96.70
HOD + SVM [Gowayyed et al., 2013] 1116 97.27
3DMM + SVM + Level = 1 100 91.74
3DMM + MLP + Level =1 20 92.66
3DMM + SVM + Level = 2 400 94.49
3DMM + MLP + Level = 2 80 94.49

Table: Comparisons between 3DMM approach, with and without
temporal split, and previous approaches on the HDMO05 dataset.
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_awpo | Pre-segmented Action Recognition (Skeleton based) %

= Pre-segmented Action Recognition:
Skeleton based and « statistical » approaches (using SVM)

= Example of two approaches [Boulahia 2017]:

= A more robust approach:
= HIF3D: Handwriting-Inspired Features for 3D action
recognition

HIF3D: Handwriting-Inspired Features for 3D skeleton-based action
recognition. In 23rd IEEE International Conference on Pattern
Recognition (ICPR), 2016.
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_xen.o| Action representation by HIF 3D: 3D features inspired by 2D features %3

= The overall process for segmented dynamic hand gesture recognition:

Amorphological Overlapping Segmented
» trajectories » » segments pattern »
reprentation

Raw
trajectories »

HIF3D
Features -Zoom
-Shake
-Swing
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= Overview of the features

= A new feature-set inspired by an efficient hand-drawn descriptor
but entirely dedicated to the 3D skeleton trajectories

« HIF3D: Handwriting-Inspired Features for 3D skeleton-based action recognition. [Boulahia, ICPR 2016].

=« Extending HBF49 to form HIF3D so as to process directly 3D trajectories instead of projecting
= Better capturing the correlation between joint trajectories

= Reducing dimensionality and avoiding redundancy

= Adding new features (such as volume related features) which are more adapted to 3D patterns

= A set of 89 features (very compact comparing to existing feature-set)
= 41 Extended features, i.e. features which can directly be extended from 2D trajectory to 3D one.

= 48 Newly features, i.e. carry the characteristic information identified for handwritten pattern but have
different formulations since the original 2D formulas can not be directly applied for the 3D case.
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= Extended features:
= Starting points:

x1, y1 and z1 are the coordinates of the first point of the pattern
cX, ¢y and cz are the coordinates of the the center of the bounding box B
| is the greatest side of the bounding box B

The bounding box B is the cuboid that enclose the pattern

= First point to last point vector:

= V is the vector that relates the first and the last point of the pattern

= Bounding box diagonal angles:

= h, wand d are the height, the width and the depth of the bounding box
B, respectively.
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= Newly features:

= 3D zoning histogram:

= We define a regular 3D partition of the bounding box B into 3 x3 x 3 voxels
resulting in twenty-seven zoning features

=« Histograms are built by computing a fuzzy weiﬁhted contribution from each point si
to its eight neighbouring voxels, where the weights are proportional to the distance
from the point to the voxels center ¢j k| .

= Convex Hull features:

= To capture the overall shape produced during the gesture we consider the convex
hull H of the resulting pattern S

= We first compute its convex hull volume VH.

. ;I'hen we extract the normalized volume and the compactness as two additional
eatures

= L is the total length of the pattern and w, h and d are the height, the width and the
depth of the bounding box B, respectively
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= Experimental Protocol : 3 subjects for learning (142 instances) + 2 subjects for testing

(109 instances)

Method Authors & Year #Features Reco. rate (%)
Dynamic Time Warping [Reyes et al., 2011] - 82.08
MIJA/MIRM + LCSS [Pazhoumand-Dar et al., 2015] - 85.23
SMIJ + Nearest neighbour [Ofli et al., 2014] - 91.53
LDS + SVM [Chaudhry et al., 2013] - 91.74
Skeletal Quads + SVM [Evangelidis et al., 2014] 9360 93.89
Cov3DJ + SVM [Hussein et al., 2013] 43710 95.41
BIPOD + SVM [Zhang and Parker, 2015] - 96.70
HOD + SVM [Gowayyed et al., 2013] 1116 97.27
3DMM + SVM + Level = 2 400 94.49
HIF3D + SVM + Level = 2 356 98.17

Table: Comparisons between HIF3D approach, with
temporal split, and previous approaches on the
HDMO5 dataset.
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Gesture recognition in real-time streaming (non segmented)
= Overview of the task: recognizing in real-time streaming
= Non-segmented Action Recognition: Example of one approaches [Boulahia 2017]
» Presentation of experimental results using Kinect and Leap Motion

Early Gesture recognition
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= The challenges that should be addressed are:
=« Temporal variability: that occurs when subjects perform gestures with different speeds.*

= Inter-class spatial variability: which refers to disparities between the displacement amounts induced by
different classes (i.e. long vs. short movements).

= Intra-class spatial variability: caused by differences in style and gesture amplitude.
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> Temporal > Inter-class spatial > Intra-cl_ass_ s_patial
variability variability variability
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= Step 1: curvilinear segmentation

=« Dynamically defining windows depending on the amount of information (i.e. motion) available in the
unsegmented flow.
= The metric used to measure the amount of information is the curvilinear displacement of joints.

= function CuDi(FS,FE) that computes the curvilinear displacement
for a given motion segment, starting at frame FS and ending at FE, as follows:

i=Fp
CuDi(Fg, Fg) = Z f!’;‘”*’
i=Fs

Avg . . .
= where d;* is the instantaneous average displacement

= Curvilinear window as being a sliding window

= Whose size is continuously updated such that it encompasses, at each frame, a specific curvilinear
displacement.
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= Step 1: curvilinear segmentation

Ilustration of the difference between the curvilinear window
and the usual temporal sliding window.
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= Step 2: curvilinear-based classifiers

= To address the second issue, inter-class spatial variability, we
propose to use as many classifiers as there are curvilinear
displacements.

= Each classifier Ci is trained to recognize all action classes but
according to the curvilinear size of classe Gi

= We constitute the training set of a classifier Ci by extracting
local features (HIF3D) according to its corresponding
curvilinear window.

= SVM classifiers are then trained on each training set.
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= Step 3: Decision process (at each frame)

= The fusion system is mainly composed of:
= as many local histograms as there are classifiers && a global histogram

4,3

2,4
3

Illustration of the global histogram functioning at frame i with
three classifiers which can G1, G2 or G3
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= Step 3: Decision process

= Each local histogram has as many entries as there are
classes to predict.

= It is used to cumulate (at each frame) the score of
each class predicted by the associated classifier Ci.

= Then, at each instant, each local histogram is updated

= the jih entry of a histogram His, associated with classifier (i is
updated at each instant:

= 3 equals to the difference between
the score of the currently predicted class, i.e. Predicted_i,

and the score of the secondly ranked predicted class by
the classifier (i.

= y corresponds to the difference between
the score of Predicted_i

and that of jih class corresponding to the jih entry of the
histogram.

CLASSES
EGl "G2 mG3

n
:~ - =)
™~ <
“ I
(43
S oM o~
™~ o r\]‘h
l - L
l = vl
I lH

FRAME4 FRAMES5 FRAME6 FRAME?7
PREDICTED: Gl = G2 = Gl = Gl

~

£ ! N
ok, UNUVWwLB_UL W

CUMULATED SCORES
'_\

o

Illustration of a local histogram functioning with
three classes at frames 4, 5, 6 and 7
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= Step 3: Decision process
= Then, at each instant, each local histogram is used to update
the global histogram.
= This latter is responsible for emitting the final decision.
= At each decision, all histograms are reinitialized to zeros, as
are the cumulated curvilinear displacements for each classifier.

CLASSES
EGl G2 mG3

FRAME4 FRAMES5 FRAMEG6 FRAME?7
PREDICTED: Gl = G2 = Gl == G1

~

[
oOUMkr VLN ULWwL AL !
31

W

—
2,2
7

15

(=Y

S

CUMULATED SCORES

(=]

Illustration of the global histogram functioning at

lllustration of a local histogram functioning with frame 7 with three classifiers which can G1, G2 or G3

three classes at frames 4, 5, 6 and 7
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= DataSet: MSRC-12 dataset
= The Microsoft Research Cambridge-12 dataset
(MSRC-12): sequences of skeleton data,

represented as 20 joint locations.

S. Fothergill, H. Mentis, P. Kohli, S. Nowozin,
Instructing people for training gestural
interactive systems, in: Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems, ACM, pp. 1737-1746.

= 12 gestures performed by 30 subjects

= 594 sequences (about 50 sequences per
class)

= a single gesture is performed several times
along a sequence.

= Participants were provided with 5 instruction

modalities including:
= images, text, video, images + text, and video
+ text.
= The dataset is annotated with action points

= @ pose within the gesture that clearly

identifies its completion.
[Xi Chen, Markus Koskela 2015]
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= Protocol (MSRC-12 dataset )
= According to the leave-subjects-out protocol.

= Mean F...and its standard deviation is reported for each instruction modality.
= Other approaches

= ELS = Efficient Linear Search;

= RF = Random Forests;

= RTMS = Real-Time Multi-Scale;

= SSS =Structured Streaming Skeleton.

= CuDi3D [Boulahia 2017]

© eric.anquetil@irisa.fr



_oep.11 | Evaluation measure

= Evaluation measure

111

Recognition/Error Rates

= TAR: True Acceptance Rate
= FAR: False Acceptance Rate

Accuracy Rates (“fiabilité"”)

= Global performance point of view

Desired Positive Desired Negative
Positive Ny | True Positive Ng False Positive le
Test Outcome
Negative N, | False negative Ng True Negative le
N4 N
TAR = —% FAR =—*%
Ng Ny
N} + Ny
Accuracy = —~2—*
N, + N,
information retrieval - the number of relevant documents retrieved by a
search / the total number of existing relevant documents Recall = TAR
NA
the number of items correctly labeled ethe positive class / Precision=——%
the total number of elements labeled < the positive class N; + N,f

recall (“rappel”)

Precision (“précision”)

information retrieval = number of relevant documents retrieved by a search
divided by the total number of documents retrieved by that search

= The F-Score (or F Measure) conveys the balance between the precision and

the recall.
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= DHG DATASET: Dynamic Hand Gesture

= DHG is a recent dynamic hand gesture dataset

= [De Smedt 2016] Quentin De Smedt, Hazem Wannous, and Jean-Philippe Vandeborre. Skeleton-based dynamic hand 8esture
Fecognition. In Proceedings of the TEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1-9, 2016.

= 14 pre-segmented hand gestures
= performed in two ways: using one finger and the whole hand.

= Each gesture is performed between 1 and 10 times by 28 participants
= in 2 ways (one finger / the whole hand)
= resulting in 2800 instances.

« Each frame of sequences contains
= a depth image

= the coordinates of 22 joints both in the 2D depth image space
and in the 3D world space forming a full hand skeleton.
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= DHG: Segmented Gesture recognition in real-time streaming

= COMPARISON BETWEEN

= [Boulahia 2017] HIF 3D APPROACH
= AND PREVIOUS APPROACHES

= CONSIDERING 14 AND 28 GESTURES ON DHG* DATASET

Method 14 gestures (%) | 28 gestures (%)

HoWR [3] 35.61 -

SoClJ [3] 63.29 -

HoHD [3] 67.64 -
Oreifej and Liu [12, 14] 78.53 74.03
Devanne et al. [5, 14] 79.61 62.00

SoCJ + HoHD [3] 82.29 -
Guerry ef al. [14] 82.90 71.90
SoCJ + HoHD + HoOWR | 3] 83.07 80.00
Ohn-Bar and Trivedi [11. 14] 83.85 76.53
De Smedt et al. [3, 14] 88.24 81.90
Our 90.48 80.48

[SHREC 2017] Results of the SHREC 2017 challenge on dynamic hand gesture recognition
[Boulahia,IPTA 2017] Dynamic hand gesture recognition based on 3D pattern assembled trajectories. In 7th
IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA 2017).
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= CONFUSION MATRIX USING 14 GESTURES OF DHG DATASET

GE&) 34 00 52 17 00 00 00 00 17 00 00 00
16 98 16 33 00 00 00 49 00 00 33
18 1.8 [ZHJ 00 00 00 00 00 18 00 00 00 0.0
13.7 20 0.0 20 00 00 00 00 00 00
18 18 0.0 0.0
34 00 00 00 0.0
00 00 00 00 16 0.0
00 00 00 19 37 0.0
0.0 15 11.8 0.0 0.0 0.0
00 16 00 98 00 16
0.0 00 00 00 00 0 00
00 00 00 00 00 00 00 00 00 00 18 [EHY 0.0

0.0 00 00 00 00 00 00 00 00 17 00 00 [ 00

00 00 27 00 00 00 00 00 00 00 00 00 00 K&
© ¢ QO$ IS SEPOOL IR S

¢ &

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

114

© eric.anquetil@irisa.fr



_aep.11 | Gesture recognition in real-time streaming / NON-segmented: (LMDHG) dataset 1

= Weaknesses of existing dynamic hand gesture datasets:
= Composed of very short clips (around 30 frames)

= Gestures are performed with a single hand
= Perfectly denoised, with almost no missing motion segments
= Composed of pre-segmenetd gestures only

= LMDHG dataset:
= A leapMotion (NON-) Segmented DataSet
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= LMDHG dataset: A leapMotion DataSet

= Composed of 50 unsegmented sequences of gestures performed

= Each sequence contains 13 % 1 class gestures leading to a total of

with either one hand or both hands by 21 participants

608 gesture instances

Order of class in each sequence is aleatory

Each frame contains the 3D coordinates of 46 joints

Ground truth Start/End along with the class labels are provided
LMDHG dataset contains noisy and incomplete gestures.

Gesture #Hands | tag name
Point to 1 HGI
Catch ] HG2
Shake with two hands 2 HG3
Catch with two hands 2 HG4
Shake down 1 HG5
Shake 1 HG6
Draw C 1 HG7
Point to with two hands 2 HGS8
Zoom 2 HG9
Scroll ] HGI10
Draw Line 1 HGI11
Slice 1 HGI12
Rotate ] HG13
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= CONFUSION MATRIX ON THE COLLECTED LMDHG DATASET

= [Boulahia,IPTA 2017] Dynamic hand gesture recognition based on 3D pattern assembled
trajectories. In 7th IEEE International Conference on Image Processing Theory, Tools and

Applications (IPTA 2017).

= Protocol: train on 70% of the sequences,
= Train i.e. sequences from 1 to 35
= Test on the remaining 15 sequences.
= Overall score:
= Segmented : 84.78%

HG1 JErieR 7.1
HG2| 6.7 gElOXl 0.0
HG3| 0.0

HG4 | 0.0

HG5| 0.0

HG6| 0.0

HG7| 0.0

HG8| 0.0

HG9| 0.0 0.0
HG10 0.0 0.0
HG11 0.0 6.7
HG12 0.0 6.7
HG13| 0.0 0.0

0.0

0.0
0.0
6.7
0.0
6.7

0.0
6.7

0.0
0.0
0.0
0.0
0.0

0.0

0.0
0.0
0.0
0.0
6.7

0.0

0.0
0.0
0.0
0.0
0.0

00 00 00 00
0.0 0.0
0.0 0.0
6.7 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 yleeRy 0.0
8.3
0.0
0.0 0.0
00 00 00 6.7
00 00 00 00

_aep.11 | Gesture recognition in real-time streaming / Segmented: (LMDHG) dataset

0.0
0.0
0.0
0.0
0.0
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0.0
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0.0
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0.0 0.0
0.0 0.0
00 7.1
0.0 0.0
20.0 6.7
0.0 7.1
0.0 0.0

0.0 0.0

0.0 83
00 7.1

0.0
ol 0.0

NI 86.7

HG1 HG2 HG3 HG4 HG5 HG6 HG7 HG8 HGY9 HG10 HG11 HG12 HG13
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= Experimental results on LMDHG dataset : Unsegmented gestures

= Baseline with a basic approach
= A sliding window approach in which the window size equals to the average of training instances

= Protocol

= train on 70% of the sequences, i.e. sequences from 1 to 35
= test on the remaining 15 sequences.

= For evaluating this basic approach with unsegmented sequences, we use the Fscore :

= Overall Fscore: 54.11%

Precision x Recall

score * ..
P‘T‘ECZS%O'HJ ‘f RBC&“
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L)

>

Introduction: understand the problematic of gesture interaction
» What is a gesture: the different natures of gestures
* Human Computer Interaction: new opportunities

L)

*

Gesture recognition: Isolated Gestures Classification (segmented)
= Overview of the task: recognizing isolated gestures (The overall pattern recognition process)
» Machine Learning and Pattern recognition: a short overview of some existing techniques
= Gesture classication: “Time-series” approaches
» Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

L)

>

Gesture recognition in real-time streaming (non segmented)
= OQverview of the task: recognizing in real-time streaming
» Non-segmented Action Recognition: Example of one approche [Boulahia 2017]
» Presentation of experimental results using Kinect and Leap Motion

L)

*

Early Gesture recognition
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_oep. 2 | Gesture Early Recognition: Introduction 121

= One possible Goal for Early recognition:
= To merge Direct and Indirect interactions into a same interface

= we have to distinguish gesture in the very beginning part

Real time Posterior
feedback feedback
o
—_—\/
Direct Indirect
manipulation command

= One Solution:
= a reject option based multi-classifier system

« for handwritten gesture early recognition [Zhaoxin 2016]
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= Goal: recognize the gesture
= from their early part

= instead of waiting until the end of them. Gesture A

Gesture B
Common part

= Difficulties
= to deal with the common beginning part ambiguity

= The proportion of the earliness is unpredictable

= (@) A normalized gesture as a template.
= (b) (c) In a size free context.

Gesture C

Common part
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_en.2 | Gesture Early Recognition: A multi-classifier early recognition system

= During the training, each classifier dedicates to different part of gestures

(short, medium, long)

f ( Classifier

h

—> Triangle / Circle

—> Triangle / Circle

Q/ Classifier
—
L i

— Triangle / Circle

Q Classifier
g \ hy

123
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124

= One strategy: A reject option based multi-classifier early recognition system

= All classifiers try to recognize the gestures

= The fusion module merge trustable decisions
= Two types of reject are used to evaluate the confidence

= - ambiguity: the shape looks like beginning of several different gesture classes

= - outlier: the classifier has never seen this type of shape

/

Classifier

Input _V
gesture Wait for l5
———] incremental
length

_->
hq Reject
Classifier R
hs Accept
Classifier )
hy

Fusion module
with reject
option

Reject

Accept

Reject
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39p 33 p
2

/7S

\ 4
Good Confusion reccjor?ictiion Confusion DF'f;‘?‘e”C‘;e
recognition J Reject J
Unknown

input
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= Ambiguity rejection [5] /
amp _ Pi — Pj — Reject
i D; / Clazslfler
1

where p; is the confidence value of best class,

p; Is the second best class from the classifier.

[5] H. Mouchere and E. Anquetil. A unified

strategy to deal with different natures

of reject. In Pattern Recognition, 2006. ICPR

2006, volume 2, pages 792-795, 2006. Ambiguous area

© eric.anquetil@irisa.fr



_oap. 2 | Gesture Early Recognition: Outlier rejection 127

= QOutlier rejection

Estimate the outlier confidence value L hy
using the minimum distance to the prototypes:
i J
D; = r]nelArll(d (gt’ gi )) Outlier rejection area

i\

g Is a test sample, g; is the prototype sample of

class 7, N is the number of prototypes.

= Reliability function

Di—p if D
out _ e_( 2l02) if D; >

‘ 1 if D, < u

Where u and o is the minimum distance and deviation computed from validation set.
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= Dynamic decision with consistance checking (N)
= N consecutive identical results in the stream of outputs

= Several recognitions during the drawing with more and more information

) e

Reject Line Triangie Triangle
\ )
|
N

First decision Decision with consistance checking
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_aap.12 | Gesture Early Recognition: Experiments 129

= Examples of Gestures: MGSet/ILG datasets

= (MGSet) Multi-stroke gestures (45 classes, 33
users, 6K samples)

= (ILG) Single-stroke gestures (45 classes, 21 users,
2K samples)
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= Results (MGSet)

= (MGSet) Multi-stroke gestures N
(45 classes, 33 users, 6K samples) )

= Results with decision consistence:
2

reject opt. allows to improve earliness

With Reject Option (MGSet)
TAR FAR RR

81.89% 14.56% 3.54%

83.44% 10.85% 5.71%

82.38% 8.85% 8.77%

Earliness

37.04%

46.82%

55.89%

130

Avg. T (ms)
456.21

523.34

591.33
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_cap.13 | Fuzzy clustering: Introduction 132

O What is cluster analysis ?

“partitioning a collection of data points into a number of subgroups (clusters), where the objects
inside a cluster show a certain degree of closeness or similarity”’

v, .t
A . Unlabeled
. - "
el et e, dafa sef
- n e :
. L]
- 1 g
1}2. .i-“~, ‘ -.t-;.?;ﬁ"‘ :'.:'a‘ i}'-;.\ .:
,\"‘-'t'.- R [ . ‘~ ’.'?.'.- LS o - ".'ﬂ"':; "l .
el L] . . I-' . . ] "\':\ --. T LT . - ...
': : o7 o - ': : . \‘;‘ ..‘.‘. ". : e et
,* . » . o T-: . L] .-I -~ ] .

w Major difficulties to find “nafural groupings”:

v Large variability in cluster shapes
» Classification criterion - Similarity or distance measure

v, Number of clusters ?
» Cluster validity problem
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1. Data Representation and Notation

- Features
- Partitions

2. Clustering Methods
- Different clustering families
- Principles of dlternating optimization
- Hard C-Means
- Fuzzy C-Means

- Possibilistic Clustering
- Cluster Vdlidity

3. Discussion and Application
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_cap. 13 | Fuzzy clustering: Data Representation 135

Q Notation
sletD={x;/j=1..N} be the data set of Nitems x;
cletP={P;/i=I..C} be the C cluster prototypes

* Each x;is described by a feature vector: x; = (xj;, X, ... , Xjn]T

( Data, Feature space) — clusters

Cxr 3= Oxp o)) = P
Q C-Partition
* A C-partition can be represenfed by a (CxN) matrix U=(uy). where pjj represents membership
of X; in P;
] |

data points

oy o My Hy

U = Clusters

Mot My Moy

» A clustering algorithm = finds the { Uycm . Urem - Upemt which "best” explains and represent
the structure in X,
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Q Different partition properties

w constrained crisp partition:

N
Unem = H{}-E{O,l} 0< zj.l <N , ZI.L
J=1
w constrained fuzzy partition:
------------ , N C
Urem = MUE[U,I]:_ 0< zp{;{:v Zufj’:l
B s j=1 i=1
= unconstrained fuzzy pattition: Upcy= > i

i =1

do not necessarily sum up to one over any column

Unem € Urem < Upewm
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Q Probabilistic Clustering

Example: Gaussian mixture decomposition

Q Competitive Learning
Neural network based algorithms

Example: Self Organization Map (SOM)

Q Vector Quantization

Example: LBG algorithm

Q Alternating optimization
Clustering methods based on objective function

Example: Fuzzy C-Means algorithm

>> Many common points between these different approaches <<
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QO General principle

“Alternating clustering methods are based on an iterative minimization of a criterion function
(objective function) to extract a partition of the data set”

Q General iterative algorithm /

dalternating optimization JE—
v step 1 (Initiclization) e
* Fix C, initial C-partition, ... )
.
v step 2 (Prototype adapfation) 7 N
* Calculate the C prototypes P; lf |
\ /
v step 3 (Update the C-parfition) - _:_::
* "Label” evaluation of the data et Yo E
* Update the C-partition matrix U -: O:
v step 4 (Termination)

* Repeat steps 2-4 until the termination criterion is met
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w Based on a constrained crisp partition:

N c
H;e {0,1}1, o< g MU<N , ; [.LU. =1
J=1 1=1
J - d(x,. P
= The Objective function is the WGSS: pUD "~ 2 I T )
QO HCM algorithm (Duda and Hart (Dud73)) N
/ step 1 (Inifialization) 2 MY
* Fix 2 < C < N, initial C-partition U(0) P = *%
I 1
v step 2 (Prototype adaptation) z uw..
* Calculate the C prototypes P; j=1 .

v step 3 (Update the C-partition)
* Update the C-partition matrix U

L, d(x , P ()= ™ (d(x,P
v step 4 (Termination) g1+ = ][ ( F2 ) (d( ] km))

I1=k=C

* Repeat steps 2-4 until Au<e 0, otherwise
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_
™ pye {01}, 2 “rj = 1 : means that each x; is in exactly one of the C clusters.
i=1

?o,‘r

e 0< Y ijﬁN : mmeans that no cluster is empty and no cluster is all of X.

j=1
m The objective function is the classical WGESS (Within Group Sum of Squared errors)

j\,.i"

< 2
To D" _21 _21 hyd (P
T= -]=

w where d? represents a distance measure, for example the euclidean distance measure:
2

5 i
d"(x;, P) = |, =By = kgl(,\-j.k_Pik)

2

w The second version is based on:
find the centroid — redllocate the cluster memberships to minimize the errors between the
data and the prototypes.
P(-1) - UM — P
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= Based on a constrained fuzzy partition:

____________ , N C
My € [0,1]5, o< Y LLU.t:N Y “;‘j =1
e = Jj=1 i =1

Q FCM algorithm (Bezdek (Bez81))

N
v step 1 (Inifialization) 2 . )"x
. ST ij. ]
*Fix2<C <N, 1<m< -, initialize U(0) j=1
v step 2 (Prototype adaptation) i~ TN -
» Calculate the C prototypes P; _zj(ufj)
Jil' =
v step 3 (Update the C-partition) Mo = ! .
* Update the C-partition matrix U(t) . . d‘quj-, P, m—1
v step 4 (Termination) ;E; dﬂxj,Pk}

* Repeat steps 2-4 until AU<e
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w fransition between full membership and no membership is gradual rather than
abrupt.

L represent membership degrees

w sOft decisions on class assignments

Q Parameters of Fuzzy C-means:
m C : Number of clusters
m U : Initial C-partition
m d?(x, P) = (- PDTA (x - P) : “distance measure”
« If A = Identity matrix then d? is the Euclidean Norm

= m is The weighting exponent called the “fuzzifier”

* When m—1, Fuzzy C-Means solution become hard.
* fo control the "“fuzziness” of the resulting clusters
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Q Example

~Membership contour lines Membership function

250

200 15
0.8
0.8
0.7
0.6
0.5

0.4+
(%)
t ]
- :la ]
0.2 =
100 150 200 250 3

0.1

0+
0

50 oo

Q Interpretation
= Memberships can be interpreted as between class degrees of sharing
w The centfers (profotypes) do not coincide with the true centfers of the clusters
w [Nfluence of noise points

QO Useful for

the discrimination of clusters — extraction and modeling
of the best boundaries between clusters
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(&) Fuzzy partitioning of En

Membership degree

0.9 —— 1.4 |
0.8 —
0.7 —— 1.2
s — 4] =
T qrq—,.‘u‘-'*‘*:‘ﬁiﬂ % o e
0.8 ""“#:%ﬁ%‘{“ @%‘5‘" * Class C1
i, i A
o i *‘J‘ng = + Class C2
ERr by .
0. | Y ‘@'ﬁ\?‘“ T,
0.2 - .-"55 4"'5 0
s 0
Fhz
45 =
Subcluster End Subcluster Enz =ubcluster Enz

15

14

12 Fune
10

Membership degree 5
3 g oo 44 16

0.6
.45
0.3
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_awp.13 | Fuzzy clustering: Possibilistic clustering

C
m Based on a unconstrained fuzzy partition: \NT
i=1

= The Objective Function is

m I

Px o Pys sy ( )
u x, Py+ s n. v (I-H.,
Y R S R g U

Q Algorithm (Krishnapuram&Keller (Kri9da) (Kri93b))
v step 1 (Initialization) m
*Fix2<C <N, 1<m< <, initialize U0) jgj(“.ij) Yy
v step 2 (Profotype adaptation) i N
* Calculate the C prototypes P; 2 ( !-IU-)H?
v step 3 (Update the C-partition) |
* Update the C-partition matrix U(t)
I

v step 4 (Termination) ij L
2 m—J
. [d (xj,Pf)]

* Repeat steps 2-4 until AU<e
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Q Example

140

120k
100F o

=l

iZ% ®

20F

D 1
o} 2D

Membership contour lines Membership function
Q Interpretation
w NMemlberships can be interprefed as degrees of typicdlity (absolute numbers)
m The centers (prototypes) coincide with the “true” centers of the clusters

m | ow influence of Noise points
Q Useful for

the intrinsic characterization of each clusters
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“the determination of the optimal number of clusters present in the data is a difficult problem”

Q Cluster validity criterion

w Many different criterions of cluster validity :
* often based on a measure of compactness and sepdrability of the clusters.

Q Different approaches

w [terative clustering:
* fry successively different values of C and evaluate the validity

w Progressive clustering:
» start with one cluster and fry progressively to extract a new cluster

w Agglomerative clustering:

» start with many clusters and agglomerate the nearest clusters according to a neightbor-
hood criterion.
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QO Fuzzy C-means

~Membership contour lines Membership function

ZE0

200k

- i i i i b
0 50 1000 120 Z00 250 3

Membership contour lines Membership function
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“The extraction of shell-like clusters (with no interior points) needs the redesigning of the distance
measure and/or of the prototype of each cluster.”

QO Example: The fitting of linear structure (e.g. lines)

~—_ prototype

distance —

Q Example: The fitting of circular shell

-
dist SodT(x, = (||x.—
istance (xj’cr') (”*rj c

L
LN

L
.

IH _ri)z prototype : (c;,ri)

.

w Useful for the detection of boundaries and shapes of objects from images
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= Pattern r = (x1,22,...,2,) =2NRIt in the n-dimensional vector space
e numelNVal features
= Assumption: r,1<i<n

= Classes take separable regions which can be separated by linear discriminant functions
= Parametric models

L2

a

N d(iE) = WX + Wy + W3 = 0
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= How does it work?

= Labeled training data

= Calculate discriminant function (e.g., perceptron algorithm)

= Discriminant function

d(z) = wixy + - - -

= For an unknown pattern

i
+ Wy T, + Wpa1 = wxr” =0

155
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= Linear discriminant functions are not always sufficient
= i.e. non linear hyperplanes are needed in : R™
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= Linear disriminant function d(z) = wixy + -+ + WeTpy, + Wn iy

s Generalized discriminant function
— w(ﬂf*)t
= With
w = (w17 s 7wm7wm—|—l)

z* = (fi(x),..., fm(2),1); fi(z),..., fm(z) : functions

s Procedure

= Reduce any arbitrary discriminant function of the above mentioned form to the linear form by
transforming the given pattern by application of functians into : f(x)

= In general ¥ j.e. to enable linear separability transform patterns into a space of higher dimension.
m>n
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= Example of function f(z)

[Thierry Artieres]

(xy) 2% Y,X2+)°)

2 dimensions 3 dimensions
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Input feature

X3
X2

[ ]

Xm

Shape properties

Output=F(input)

Output

Class 1
Class 2

Class C

Class membership

160
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MultiLayer Perceptron (MLP)

__Chap. 16 |

Input layer Hidden layer Output layer
bias Class 1
x1
X2
Class K
Class C
Input of a neural j f: activation function Input of neural K
of the layer 0 (example sigmoid):
m 1 n
aj _l.;leixi +wj0 0 a, = .glwkjyj +W g
- 0 1 [ =

Output of neural j Output of neural k

yj:f(aj) z, = f(a,)
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= Learning and generalization capacities

= Learning

= consists of presenting an input pattern and modifying the network parameters (weights) to reduce
distances between the computed output and the desired output

—

Features /

Input data base Classifieur
= Generalization / Feedforward
= consists of presenting a pattern to the input units

and passing the signals through the network
in order to get outputs units

0000

classes

v

" output
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= MLP: Universal approximator: [A. Kolmogorov]

= “Any continuous function from input to output can be implemented in a three-layer net, given sufficient
number of hidden units, proper nonlinearities, and weights.”

e

—>Any function
from input to output
can be implemented
as a three-layer
neural network wo layver

[Duda, PHart, Stork, )
“Pattern Classification”] X X

-1

ic.anquetil@irisa.fr
=1,




_aap.1s | MLP: Learning 164

= The aim

= Construction of a network :
= to define the nonlinear functions and the weight values

= The Learning process (supervised)

= Some empirical choices

= Number of neural and layers
= Activation functions

= Principles
= Present the network a number of inputs and their corresponding outputs
= See how closely the actual outputs match the desired ones
= Modify the parameters to better approximate the desired outputs
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= Principle
= The error signal is obtained from the comparison between the target and estimated signal.

= The error signal is propagated layer by layer from the output layer to the input layer to adaptively adjust
all weights in the MLP.

= Back-propagation (BP) algorithm

=« Let t, be the k-th target (or desired) output and y, be the k-th computed output withk =1, ..., ¢ and w
represents all the weights of the network

= The training error to minimize: 1 < , 1 ,
= Goal: E(W):EZ(yk_tk) :EHY_tH
We goes through the weight k=t
space to find the point
corresponding to the
minimum of the error

=« Method: gradient descent

© eric.anquetil@irisa.fr



_aan.1s | MLP: Back-propagation (BP) algorithm 166

= The backpropagation learning rule is based on gradient descent

OF
ow
= Going back from “output” to “input”:

1 Calculate the derivatives of the error with respect to weights
2 Using these derivatives for adjust the weights

where 7 is the learning rate which
indicates the relative size of the change
in weights
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= Sensitivity deduce from the gradient descent
hidden-to-output (j =2 k) weights

9 08 Oy O 0.z ; (because e, = w;;z, partial input of a, )
ow,, 0y, Oe, Ow,

oF O .
O = P (;/k = — 1) (a;)

yk ek Input layer Hidden layer Output layer
Aw,. =—10,2,

e, =Wz, :partial input of k (j — k)
v, output of k

z, output of j
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_aan.1s | MLP: Back-propagation (BP) algorithm 168

= Sensitivity deduce from the gradient descent
at a hidden unit (i=2j):
= the sum of the individual sensitivities at the output units
weighted by the hidden-to-output weights wy;; all multipled by f'(a)

5, = 1'(a,)Y wyd, Aw, =16 x,
k=1

= Backpropagation algorithm

The weights are initialized with pseudo-random values and are changed in a direction that will reduce the
error: Input layer Hidden layer Output layer
Begin initialize ny; W, n, m=0
dom=m+1
X" <« randomly chosen pattern

Wis = Wji — NojXis W5 = W5 — NMOZj
until Stopping criterion
return w

End

t © eric.anquetil@irisa.fr



_aap.1s | MLP: Learning with validation 169

= Learning with validation (to avoid overfitting)

= Two Learning Databases:
One for the learning phase
One for the validation of the learning

= Test Database
Generalization evaluation

Error

Learning database

Learning cycles
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= knowledge modeling
= Easy/Powerful learning

=« Knowledge are distributed il all the weight of network
= Black-box system
= Discriminative learning: with Hyper planes

v
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Input layer Output layer

1 hidden layer

bias Class 1
x1 Q\\\‘
x2 \:\:\
. e
xm O Class C
= O : radial activation function Output

distance measure to the prototype
(linear combination)

n
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= Two approaches for the learning phase:
= 1/ Globally by backpropagation

= 2/ In two phases

= a/ clustering to initialize the centers
of the Radial Basis Function (RBF)

= b/ Output Weights
learning by Least Mean Square (LMS)

172
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3ap 33 p

ngg\\oxs w”%o(g?
QW )

(7S

. Good Confusion Distance
Good Confusion . .
.. recognition : Reject
recognition Reject
Unknown

input
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= With MLP : only confusion reject
= With RBFNN : both confusion and distance reject

Confusion
Reject

Distance Reject

=

© eric.anquetil@irisa.fr



_xen.17 | Distance reject / with thresholds

el T e ] i
ey i)
2 v T EFL
/!x“.‘.é SRR . >
s LTI TIRG
A LN \‘."':‘
e,

T
= q4 24
o &
X X2
= q4 20
o o ° QQ.:
{
= 4 14
= L o 4 10
- {5
@ Lo
1 1 1 1 1 1
25 a0 35 40 45 ol Xl

2D space representation

2

S

7 X o I S T
,gt s “\%‘ﬁ%’ .’\é’:‘&‘:’ﬁﬁ&b
A, g

L s

R

Activation degree

Pattern to reject

o
‘%“*‘-—;z:" | .J&\%:%éi;
e dlINARN w@%*
X

-
Q‘\:ﬁ‘%’s‘g .é
v ST

176

© eric.anquetil@irisa.fr



_xen.7 | Confusion reject / with thresholds 177

© eric.anquetil@irisa.fr



_aap.17 | Reject option: Main approaches (distance reject) 178

Class number or reject ac Class number or reject 30
i '
Class number . HEJectmn
I Decision (=
e ™y - ~ - ~
Target / Reject . Reject option
o Target Classifier
Classifier | g L (Classifier)
™ - . vy
4 T
A [
Features Features
(a) a Reject Class in the target classifier (b) a Specialized Classifier on the feature space
Class number or reject SCRF Class number or reject TRF
I !
Class number Rejection Class number - Rejection
Decision -.—J| I—-— Decision |- |
Fd ™, 3 - ’ ", - -TTTTTTTT T T E T
e i i e : : Heject option
Target Classifier ' Reject option Target Classifier ) . .
d {1} | (Classifier) 0 {1} | (Thresholds)
. I 7 e T A . I I y-------
[} A
Features Features
(c) a Specialized Classifier on the Reliability Func- (d) Thresholds on the Reliability Functions {; }
tions {0 } [Mouchére07]
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179

s Evaluation measure Desired Positive Desired Negative
Positive N, | True Positive Ng False Positive le
Test Outcome
Negative N, | False negative Ng True Negative le
= Recognition/Error Rates NA N4
R
= TAR: True Acceptance Rate TAR = —* FAR = N
= FAR: False Acceptance Rate E &
4 R
= Accuracy Rates (“fiabilité") Accuracy = Ng + Ng
= Global performance point of view Np+ N,

information retrieval -2 the number of relevant documents retrieved by a search / the total

number of existing relevant documents

= Precision (“précision”)

the number of items correctly labeled the positive class /
the total number of elements labeled e the positive class

information retrieval - number of relevant documents retrieved by a search divided by the
total number of documents retrieved by that search

Precision = y

N+ N

E

A
E
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_awp.17 | Evaluation: distance reject / evaluation

A
E : : : L. TAR = Ng
= Evaluation of outlier(distance) rejection N,
= ROC curves (Receiver Operating Characteristics)
=« The optimum operating point is the top left point FAR — N_jq4
N
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= Evaluation of confusion rejection
= error/reject curve (E/R curve)

= The optimum operating point is the bottom left point

Error rate (%)

B%

4%

2%

0%

operating point

E/R convex hull curve ----

AUERC [

20%
Reject rate (%)
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= Origin in statistic learning theory; class of optimal classifiers

= Main problem of the statistic learning theory: Generalization ability
= When does a low training error cause a low real error?

= Large/Max-Margin classifier / Linear Separable Classes

= With SVM a discriminating hyperplane with maximal border is searched. Volker Margner
Optimal: that with the largest of all possible Haikal EI Abed
discrimination planes "

= Clear reasonable (with constant intra classes \
variation classification confidence grows with

increasing interclass distance)

= Theoretically SVM are justified by statistic
learning theory

: 1
+1 ifu, eC 1/2 marge = —
Xt jwheree, {1 {1020 T
find w and b such that
(wu,; +b)=0

W, + b = +1for c, = +1
Wu, +b=<-1forc, =-1 Discrimination line 2 is better than line 1
which can be rewritten as

cj(Wuj +b)2 +1
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= Training max-Margin classifier

= Constraint optimization (two classes C,; et C, (+1,-1))

= To find support vector /hyperplan parameters
= Margin to closest +1 (u,) and -1 (u,) points to be 1

—1(wau,+b) =1

+1(wa, +b) =1 X

. 2
= Maximize marge = —-
W
N 1y g2 1
= Minimize = 1/2 marge = —
? [
Maximize the margin & || Vectors u; outside the volume .
(wu,; +b)=0

min %HWHZ subject to ¢, (Wi, +b)> +1,

= Unconstrained problem using Lagrange multipliers

184

Volker Margner
Haikal El Abed

Discrimination line 2 is better than line 1

© eric.anquetil@irisa.fr



_aer.18 | Basic notion of Support-Vector-Machines (SVM) 185

= Classification
= Given unknown vector u, predict class (-1 or 1) as folows:

k
h(u) = sign(D_c,y'x" -u+b) = sign(w.u +b)
=1

y=—1

= The sum is over k support vectors (x\,y')

= If Not linearly separable (Soft Margin)

= Vectors u; outside the volume, which
are correctly classified (c) i.e.

c;(wu,+b)=1 —> &,=0

= Vectors inside the volume, which
are correctly classified, i.e.

OSCj(w.uj+b)<l — O<§j§1
= Vector, which are wrongly classified If no discrimination line exists
(slack variables)
cj(w.uj+b)<0 —> §j>1

c,(wu, +b)=1-¢,

= Parameter Ccan be viewed as a way to control
overfitting: it “trades off” the relative importance minimize = HWHZ + CZ g
of maximizing the margin and fitting the training data. ’
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= Nonlinear SVM =» try a higher dimensional space 01) S0y ty)
= Problem: Very high dimension of the feature space
= i.e. polynomes -th orderp R"™ = R™, m = O(nP)
= Advantage with SVM
= Learning depends only on dot product of sample pairs
= Recognition depends only on dot product of unknown with sample

= Trick with kernel functions:

= Originally in only R™ r products neces;r;
= New in onlyR™ :r product U (x)U(x;)y
= Solution:
! W (x,;)W(x;)e calculated explicitly, but can be expressed with reduced complexity with kernel
functions Kz, x;) = U(z)¥(x,)
= Example: for the transformation U: R?=R°
U((y1,v2)) = (U1, ¥3, V201, V2y2. V25192, 1)
= computes the kernel function K(xy,x;) = (xx; + 1)% = U(x)VU(xy)

the scalar product in the new feature space RO

© eric.anquetil@irisa.fr



_aer.18 | Basic notion of Support-Vector-Machines (SVM) 187

= Strengthens of SVM

= SVM supplies very good classification results according to present expertise; for a set of tasks it is
considered as the “Top Performer”

= Sparse-representation of the solution by support vectors
= Easily applicable: small parameter set, no a-priory-knowledge necessary
= Theoretical statements about results: global optimum, generalization ability

s Weaknesses of SVM

=« Multi-class approach still subject of research (extension to more classes e.g. with a hierarchical
procedure, where one certain class and the remainder are regarded as two classes )

= Slow and memory-intensive learning

= Tuning of SVMs is still a “black art”: Selection of a specific kernel and suitable parameters is made by
tests
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