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Chap. 1 |  2D and 3D Action/Gesture recognition: a challenge ?

 Introduction: understand the problematic of gesture interaction
 What is a gesture: the different natures of gestures
 Human Computer Interaction: new opportunities

 Gesture recognition: Isolated Gestures Classification (segmented)
 Overview of the task: recognizing isolated gestures (The overall pattern recognition process)
 Machine Learning and Pattern recognition: a short overview of some existing techniques

 Gesture classication: “Time-series” approaches
 Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

 Gesture recognition in real-time streaming (non segmented)
 Overview of the task: recognizing in real-time streaming
 Non-segmented Action Recognition: Example of one approach [Boulahia 2017] 
 Presentation of experimental results using Kinect and Leap Motion

 Early Gesture recognition

8
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9Chap. 1 |  2D gesture sensors: pen-based and touch-based gestures

 Pen-based gesture interaction
 Device platforms

 Smartphone
 Digital Pen
 Tablet PC
 Electronic Whiteboard
 …
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Chap. 1 |  2D gesture sensors : pen-based and touch-based gestures

 Touch-based gesture interaction (touch screen)
 Multi touch based interaction (ex: whiteboarding solution…)
 Multi-user based interaction (ex: surface table, surface Hub…)

 Tracking technology: capacitive touch screen display,ultrasound, infrared… 

10
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Chap. 1 |  3D gesture sensors: whole body gestures recognition

 Dynamic whole body gestures recognition
 Wide range of application fields: such as video 

surveillance,  sport video analysis, human-
computer interaction, computer  animation and 
even health-care.

 Two main groups of approaches
 RGB + Depth image recognition
 Skeleton-based action recognition

 Sensor technologies 
 Emergence of Kinect 

like sensors (2010)

11

RGB

Depth

Skeleton
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Chap. 1 |  3D gesture sensors: Hand Gesture

 Dynamic hand gestures
 using skeleton joint data

 Sensor technologies 
 the Leap Motion device
 Intel's RealSense depth-sensing 3D 

camera
 Depth sensor + camera

 Few existing applications

12
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14Chap. 2 |  2D gesture inputs: Pen-based and touch-based gestures

 On-line

 Data input

21 3

i point : (x , y, time, pression )e

0 X

Y

(x, y, time, pressure) / signal : sequences of 2D points

Pen-up

strokes

Pen 
down

Pen-down 
trajectory

Pen-up 
trajectory
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Chap. 2 |  2D gesture inputs: Multi-stroke and Multi-touch 

 Multi-stroke and Multi-touch Gesture

 Several trajectories to consider

Multi-stroke 
(sequence of strokes)

Multi-touch 
(several strokes in //)

 Strokes are synchronized or partial 
synchronized

- Shape
- Spatial relation
- Temporal relation

 Strokes are written in sequence
- Shape
- Spatial relation

1

2
3

4

5

6

s1
s2

tTime overlap

s1 s2

tNo Time overlap

s3

a



© eric.anquetil@irisa.fr

Chap. 2 |  3D gesture inputs

 Two main groups of approaches:
 RGB-D based => input data = a sequence of frames

 Skeleton based 
 By using Kinect, LeapMotion
 a sequence of 3D points = trajectory, angular information…
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Hypothesis

Chap. 2 |  Inputs: Trajectories / One generic approach for 2D/3D gesture recognition?

 3D gesture
 A robust approach : Skeleton based approach

 capture the essential structure of a subject in an easily understandable way 
 robust to variations in viewpoint and illumination

 skeleton data consist in trajectories of the body joints
 Trajectories: a unified way to consider gestures

 Same data type: trajectories or signal
 3D gesture trajectories may be processed similarly to 2D trajectories

 Moreover from Graphonomic point of view
 3D and 2D gestures : a human is the performer
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Chap. 3 |  Gesture interaction

 General Introduction based on [Zhaoxin Chen 2016]
 Touch gesture examples[1]

[1]  Touch gesture reference guide, Luke Wroblewski, http://www.lukew.com/
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Chap. 3 |  Gesture interaction: Mono Stroke

 Development of gesture interaction

Mono touch
Mono stroke

Tap Drag

a
Handwritten character

0 Number of strokes
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Chap. 3 |  Gesture interaction: Multi-Stroke

 Development of gesture interaction

Number of strokesMono touch
Multi-stroke

IconMath symbol Chinese character

Mono touch
Mono stroke

0
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Chap. 3 |  Gesture interaction

 Development of gesture interaction

Number of strokesMono touch
Multi-stroke

Multi-touch

Pinch Rotate

Number of strokesMono touch
Mono stroke

0
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Chap. 3 |  Gesture interaction: Direct and Indirect commands

 Two types of interactions

23

Direct manipulation

a
Indirect command

a
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Chap. 3 |  Gesture interaction: Direct and Indirect commands

 What if a user wants to use the multi-touch gesture to make a command instead of manipulation.

Select and copy

Paste at somewhere

How to recognize a multi-touch gesture as indirect command? 
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Chap. 3 |  Gesture interaction: Direct and Indirect commands

 Is it possible to merge these two interactions into a same interface

Paste

How to support these two interactions in a same context? 

Pinch
Direct manipulation Indirect command
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Chap. 3 |  Gesture interaction: multi-touch gestures

 Open more possibilities to use multi-touch gestures
 complex gesture for indirect commands
 mix the direct manipulation and indirect command

Number of strokesMono touch
Multi-stroke

Multi-touch

Pinch

Number of strokesMono touch
Mono stroke

0

Multi-touch
direct && 
indirect

Paste
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Chap. 3 |  Gesture interaction: Multi-user interaction

 Multi-user interaction
 to deal with several gestures in the same time

27

Number of strokesMono touch
Multi-stroke

Multi-touch

Number of strokesMono touch
Mono stroke

0

Number of users

Multi-user

Multi-touch
direct && 
indirect
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Chap. 3 |  Perspective : future of Pen and Touch interaction [Pfeuffer CHI 2017] 28

 Example of novel way of 
interaction: Thumb + Pen 
interactions 
 Support simultaneous pen and 

touch interaction, with both 
hands

 allow changing the mode of 
the pen

 changing the mode that 
applies to the pen conventions.

 additional navigation 
functionality

 …

[Pfeuffer 2017] Thumb + Pen Interaction on Tablets
Ken Pfeuffer, Ken Hinckley, Michel Pahud, Bill Buxton
Microsoft Research, Redmond, WA, USA
Interactive Systems, Lancaster University, UK
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Chap. 4 |  Intra/Inter –class: shape variabilities 30
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Chap. 4 |  Intra/Inter –class: shape variabilities

 Writer dependent versus Writer-independent recognizer
 Resource cost
 Ambiguity of characters between different writers
 No ambiguity for each writer

 [Mouchère07]

31

Writer 1

Writer 2

Writer 3

Writer 4

Writer 5

u v r n h
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Hypothesis

Chap. 4 |  Intra/Inter –class: temporal and spatial variabilities

 Temporal variability 
 Occurs when subjects perform gestures with 

different speeds

 Inter-class spatial variability 
 Different gesture classes are likely to result in 

different amount of displacements

 Intra-class spatial variability 
 Same action class with different amount of 

displacements 
 In some applications, capturing such intra-class 

variabilities might be desirable as it brings additional 
information and could allow for different 
interpretations of the same class of gesture. 
Othewise need to must be neutralized.

[Said Yacine 
Boulahia 2017]
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Chap. 4 |  Gesture Recognition: a transversal challenge

Application

Human computer 
interaction

Pattern recognition

• Animation
• 3D/2D actions
• Map view
• Document composition

• Mono touch & Multi-touch
• Direct & Indirect command
• Multi-user interaction

• Isolated multi-touch gesture recognition
• Non segmented gesture recognition
• Early recognition for touch gesture
• Multi-user gesture segmentation and 

recognition
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Chap. 5 |  2D and 3D Action/Gesture recognition: a challenge ?

 Introduction: understand the problematic of gesture interaction
 What is a gesture: the different natures of gestures
 Human Computer Interaction: new opportunities

 Gesture recognition: Isolated Gestures Classification (segmented)
 Overview of the task: recognizing isolated gestures (The overall pattern recognition process)
 Machine Learning and Pattern recognition: a short overview of some existing techniques

 Gesture classication: “Time-series” approaches
 Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

 Gesture recognition in real-time streaming (non segmented)
 Overview of the task: recognizing in real-time streaming
 Non-segmented Action Recognition: Example of one approach [Boulahia 2017] 
 Presentation of experimental results using Kinect and Leap Motion 

 Early Gesture recognition

35
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Chap. 5 |  Overview of the task: generic flowchart

 Human action recognition
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Chap. 5 |  The overall pattern recognition process (segmented gestures)

 The overall process for segmented dynamic gesture recognition (hand gesture illustration)

37

Step1: 
pre-

processing

Raw
trajectories

Normalization
Amorphological

trajectories

Step2: 
Features

Extraction

Segmented
pattern 

reprentation

Step3: 
Classification Class label

-Zoom
-Shake
-Swing
-….
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Chap. 5 |  The overall pattern recognition process (segmented gestures): Pattern Recognition

 “Time-series” approaches 
 Input : Handle the sequential data with variable lengths

 Elastic Matching (Dynamic Time Wrapping, DTW)  similarity 
between two sequences 

 Hidden Markov Model (HMM)
 Recurrent neural networks (RNNs), Time, Space Delay Neural 

Network (TDNN, SDNN)
 long short-term memory (LSTM) network

 “Statistical” approaches
 Input : Feature vector (low level representation)
 Recognition system: Classifier (learning and generalization phase)

 Support Vector Machine (SVM)
 Neural Network (MLP, RBF,….), 
 Fuzzy Inference System (FIS), 
 Decision tree, …

 Advantage: Quite easy to design, very accurate   
Drawback: Black box system, difficult to optimize

38

X1

X2

X2
X1

Activation degree

qs q1 qfq3 q2 0.2
0.90.60.8

0.4

0.1 0.10.1
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0.1



© eric.anquetil@irisa.fr

Chap. 5 |  The overall pattern recognition process (segmented gestures): Pattern Recognition

 “Structural” approaches
 Input 

 Primitives  feature vector (high level representation)
 Based on fine analysis of the pattern

 Recognition system: Classifier (learning and generalization 
phase)

 Possibly the same classifier as “statistical” approaches
 Fuzzy Inference System (FIS), Decision Tree, … 

 Advantage: transparent system, possible optimization
Drawback : more difficult to design

 Others
 K nearest neighbors (KNN) (without Learning phase …)… need 

to define a distance (ex: DTW…)
 Hybrid Approaches : HMM + NN

39
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v1
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Gesture classication: “Time-series” approaches
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Chap. 6 |  Gesture classication: “Time-series” approaches 

 Many fields to consider time-ordered Series of Data: 
 Motion/Gesture

 M. Morel, C. Achard, R. Kulpa, and S. Dubuisson, “Automatic evaluation of  sports motion: a generic computation of spatial and 
temporal errors”, Image and  Vision Computing, vol. 64, pp. 67–78, 2017.

 M. T. Pham, R. Moreau, and P. Boulanger, “Three-dimensional gesture comparison using curvature analysis of position and 
orientation,” in EMBC’10, pp. 6345–6348, IEEE, 2010.

 F. Zhou and F. D. la Torre Frade, “Canonical time warping for alignment of human behavior,” in Advances in Neural Information 
Processing Systems Conference (NIPS), December 2009.

 Handwriting
 I. Guler and M. Meghdadi, “A different approach to off-line handwritten signature verification using the optimal dynamic time 

warping algorithm,” Digital Signal Processing, vol. 18, no. 6, pp. 940–950, 2008.
 Mitoma, H., S. Uchida, and H. Sakoe. Online character recognition based on elastic matching and quadratic discrimination. in Eighth 

International Conference on Document Analysis and Recognition. 2005. p. 36-40 Vol. 31.
 Niels, R. and L. Vuurpijl, Dynamic time warping applied to Tamil character recognition. Eighth International Conference on 

Document Analysis and Recognition, 2005: p. 730-734 Vol. 732.

 Biological systems
 B. S. Raghavendra, D. Bera, A. S. Bopardikar, and R. Narayanan, “Cardiac arrhythmia detection using dynamic time warping of ECG 

beats in e-healthcare systems,” in IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–6,
IEEE, 2011.

 Audio (speech or music) signals. 
 G. Kang and S. Guo, “Variable sliding window DTW speech identification algorithm,” in Ninth International Conference on Hybrid 

Intelligent Systems, pp. 304–307, IEEE, 2009. 
 Ning Hu, R. Dannenberg, and G. Tzanetakis, “Polyphonic audio matching and alignment for music retrieval,” in IEEE Workshop on 

Applications of Signal Processing to Audio and Acoustics, pp. 185–188, IEEE, 2003. 

41
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Chap. 6 |  Gesture classication: “Time-series” approaches 

 Time-series challenges
 Difficulties:  length variability

 requiring their temporal alignment as a pre-processing step

 To learn a Model
 to derive a single model from a set of signals corresponding to several 

instances of the same physical process.

 Main Simple Approaches

 Hidden Markov Model (HMM)

 Dynamic programming (DP) / Dynamic time warping (DTW)

 [Morel 2017] Marion Morel, Catherine Achard, Richard Kulpa, and Séverine 
Dubuisson.  Time-series averaging using constrained dynamic time warping with 
tolerance.  Pattern Recognition, 2017.
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Chapitre 7
Hidden Markov Model
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Chap. 7 |  Classification: Hidden Markov Models (HMM)

 Hidden Markov Models: approach inspired from speech recognition
 deal with sequence of observations 
 find application in practically all ranges of the statistic pattern recognition 

 HMMs
 Generalization of homogeneous Markov chains with a stochastic process on two stochastic processes

 Sequence of the states is produced by the transition probabilities aij
 At each state is associated an emission probability bj(o)

44
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Chap. 7 |  HMM: Definition
 Definition

 An HMM is a double stochastic process
 an underlying stochastic process generates a sequence of states

q1, q2, … , qt, ... qT,

Where t : discrete time, regularly spaced T : length of the sequence
qt ∈ Q = {q1, q2, ... qN} N : the number of states

 each state emits 
an observation according to a second stochastic process :

ot ∈ O = {o1, o2, ... oM} M : number of symbols
oi : a discrete symbol

 Specification of an HMM λ = (Π , A, B) 
 A - the state transition 

probability matrix

aij = P(qt+1 = j|qt = i)

 B- observation probability distribution

bij = P(ot = oj|qt = qi)

 Π - the initial state distribution 10
1

=≥ ∑
=

M

j
ijij bandb
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Chap. 7 |  HMM: example

 Example of non ergodic model (left-right model)

 3 states + 1 starting state qs + 1final state qf

 qs and qf are non emitting states
 Assume there are 2 symbols to observe O = {o1=a, o2=b}

 Example of possible observation sequence: “a b b b” 

A =



















0 08 01 01
0 0 0 6 0 4
0 0 01 0 9
0 0 0 1

. . .
. .
. .Π =



















0 2
0 7
0

01

.

.

.

P(a|q1)
P(b|q3)

B =

















08 0 2
0 4 0 6
01 0 9

. .

. .
. .

qs q1 qf q3 q2 0.2
0.90.60.8

0.4

0.1 0.10.1

0.7
0.1

Observation symbol 
probabilities

Transition state 
probabilities

Initiale state 
probabilities [C. Viard-Gaudin]
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Chap. 7 |  HMM: example

 The most probable state sequence is: 
 q2, q3 resulting in the symbol 

sequence “bb”.
 But this sequence can also be 

generated by other state sequences, 
such as q1, q2.

 Computation of the likelihood of an observation sequence:
 Given X = “aaa” compute the likelihood for this model : P(aaa | λ)
 The likelihood P(X | λ) is given by the sum over all possible ways to generate X.

State 
sequence 

Init Obs a Trans Obs a Trans Obs a Trans Joint 
probability 

q1q2q3 0.2 0.8 0.8 0.4 0.6 0.1 0.9 0.0027648 

q1q3q3 0.2 0.8 0.1 0.1 0.1 0.1 0.9 0.0000144 

q2q3q3 0.7 0.4 0.6 0.1 0.1 0.1 0.9 0.0001512 

 P(aaa|λ) = 0.0029304 

 
[C. Viard-Gaudin]

qs q1 qfq3 q2 0.2
0.90.60.8

0.4

0.1 0.10.1

0.7
0.1

B =

















08 0 2
0 4 0 6
01 0 9

. .

. .
. .

a   b
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		State sequence

		Init

		Obs a

		Trans

		Obs a

		Trans

		Obs a

		Trans

		Joint probability



		q1q2q3

		0.2

		0.8

		0.8

		0.4

		0.6

		0.1

		0.9

		0.0027648



		q1q3q3

		0.2

		0.8

		0.1

		0.1

		0.1

		0.1

		0.9

		0.0000144



		q2q3q3

		0.7

		0.4

		0.6

		0.1

		0.1

		0.1

		0.9

		0.0001512



		

		P(aaa|) =

		0.0029304
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Chap. 7 |  HMM: basic problems

 The 3 basic problems for HMMs
 Problem 1 : Evaluate the probability of an observation sequence (Forward-Backward algorithm)

 Given O = (o1,o2, … oT) and a model λ
 How to efficiently compute the probability P(O | λ) of a given observation sequence?

 Problem 2 : Find out the most likely state sequence 
(Viterbi algorithm)
 Given O = (o1,o2, … oT) and a model λ
 how to efficiently find the optimal state sequence for which the probability of a given observation O = 

(o1,o2, … oT) is maximum.

 Problem 3 : Learning
(Baum-Welch algorithm)
 Given a set of training sequences {O = (o1,o2, … oT)} , how to efficiently estimate the parameters of 

a model λ = (Π , A, B) according to the maximum likelihood criterion.
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Chap. 7 |  HMM: Viterbi algorithm

 Viterbi algorithm: Solution by Dynamic Programming
 Define δt(i) the highest probability path ending in state qi

 δt(i) = max P(q1,q2,…,qt=qi , o1,o2,…ot | λ)
q1,q2,…,qt-1

 By induction:
• δt+1(k) = max [δt(i) aik] . bk(ot+1), with 1≤ k ≤N

1≤i≤N

• Memorize Ψt+1(k) = arg max(δt(i) aik)
1≤i≤N

qs 
q1 

qf
q3 

q2 
0.

2
0.

9
0.

6
0.

8

0.
4

0.
1

0.
1

0.
1

0.
7

0.
1

o1 o2 o3 o4 o5 o6
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Chap. 7 |  HMM: Viterbi algorithm
 Viterbi algorithm: Solution by Dynamic Programming

1. Initialization
For 1≤ i ≤N  { δ1(i) = πi x bi(o1); Ψ1(i) = 0;}

2. Recursive computation
For 2≤ t ≤T

For 1≤ j ≤N
δt(j) = max [δt-1(i) aij] . bj(ot);

1≤i≤N
Ψt(j) = arg max(δt-1(i) aij);

1≤i≤N
3. Termination

P* = max[δt(i)];
1≤i≤N

q*T = arg max[δT(i)];
1≤i≤N

4. Backtracking  
For t=T-1 down to 1 { q*t = Ψt(q*t+1); }

P* gives the required state-optimized probability
Γ* = (q1*,q2*, …, qT*) is the optimal state sequence

qs 
q1 

qf
q3 

q2 
0.

2
0.

9
0.

6
0.

8

0.
4

0.
1

0.
1

0.
1

0.
7

0.
1

o1 o2 o3 o4 o5 o6
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Chap. 7 |  HMM: discrete versus continuous

 Different types of HMMs on the basis of the kind of symbols:
 Discrete HMMs

 Number of possible symbols, 
probability of the symbols in matrix

 quantization errors at boundaries
 relies on how well Vector Quantization 

(clustering) partitions the space
 sometimes problems estimating 

probabilities when unusual input 
vector not seen in training

 Continuous HMMs
 Probabilities of symbols 

in continuous form; distribution density
 Example: the emission probability 

is expressed with mixtures of Gaussians.

[Juan 04]

Discrete HMM 
5 clusters 
[Viard Gaudin]

Sequence of primitives 
[Viard Gaudin]
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Chap. 7 |  HMM: example

 Another explicit segmentation : example of an on-line approaches 
 Discrete Emission probability

 Sequence based on primitives
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Chap. 7 |  HMM: for Speech

 Example of using HMM for word “yes” [John-Paul Hosom 2009]

53

y eh s

0.3 0.5 0.8
0.7 0.5 0.20.4sil sil

1.00.6

bsil(o1)·0.6·bsil(o2)·0.6·bsil(o3)·0.6·bsil(o4)·0.4·by(o5)·0.3·by(o6)·0.3·by(o7)·0.7 ...

o1 o2 o3 o4 o5 o6 o7 o8 o29
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Chapitre 8
Dynamic Time Warping (DTW)
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55Chap. 8 |  DTW : Introduction

[M. Sridhar 07]

Euclidean Distance
Sequences are aligned “one to one”.

“Warped” Time Axis
Nonlinear alignments are possible.
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Chap. 8 |  DTW : Principles

 Principles
 Given: two sequences C: x1,x2,...,xn and Q: y1,y2,...,ym

 Wanted: align two sequences base on a common time-axis

 Conditions
 Boundary conditions: We want the path not to skip a part
 Monotonicity: The alignment path does not go back in “time” index
 Continuity: The alignment path does not jump in “time” index
… A good alignment path is unlikely to wander too far from the diagonal 

56

two time series Q and C, 
length n and m respectively

an (n*m) matrix is constructed to 
store the distance between items in 

Q and C.

the result alignment

optimal 
warping 

path
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Chap. 8 |  DTW : Algorithm

 Dynamic programming

57

d(i,j) = distance between Qi & Cj - -for instance (Qi − Cj)2

D(i, j) = distance cumulée

Initial condition:

D(1,1) =𝑑𝑑 1,1

D(1,j) = ∑𝑝𝑝=1
𝑗𝑗 𝑑𝑑 1, 𝑝𝑝 𝑗𝑗 =1…m

D(i,1) = ∑𝑞𝑞=1
𝑗𝑗 𝑑𝑑 𝑞𝑞, 1 𝑖𝑖 =1…n

DP-equation:    

D(i, j – 1) 
D(i, j) = min D(i – 1, j – 1)    + d(i,j) 

D(i – 1, j)  

Warping window: j – r ≤ i ≤ j + r.

Time-normalized distance: 

D(Q , C) = d(n, m) / c  

c = n + m.

The warping path 

φqp(k) = (φqp
q (k), φqp

p (k))

j

m

1

n1 i

d(1,1)

d(n, m)

i = j + r

i = j - r

1
1

1

Ti
m

e 
Se

rie
s Q

Time Series C
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Chap. 8 |  DTW : Illustration

 Alignment of two pairs of signals
 The matching between points of two pairs of signals 
 Superimposition of the warping path (φxy) on the cumulative distances matrix D.

58

[Morel, 2017]

warping path (φxy)
x(i) and y(j) 
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Chap. 8 |  DTW : Pattern Recognition using KNN (without learning)

 General Principle: 
 Classification: Distance-based methods
 K Nearest-Neighbor Classifier

Gesture samples:
One or several samples/class

Gesture to recognize

KNN algorithm

results
1

2 3

4

2

1

Class 4
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Chap. 8 |  DTW : Pattern Recognition using KNN (without learning)

 Basic idea
 Similarity can be described as distance in a specific space

 We can use DTW for estimate the distance between tow sequences (gesture)
 We can use a set of feature for estimate the distance between tow sequences (gesture)

 If suitable features were selected, that means
 patterns of the same class have similar features 
 patterns of different classes have dissimilar features

 Need to define
 A distance function            for two arbitrary patterns x and y
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Chap. 8 |  DTW : Pattern Recognition using KNN (without learning)

 1 Nearest-Neighbor Classifier (1NN)
 Assumption: for each pattern class                        exactly one (representative) prototype     is given.
 For an unknown pattern    the following classification rule is then valid:

 Task
 Assign    to the class      , to which the next neighbor      in the feature space belongs
 Reject     , if no unique minimum among             exists or if the existing unique minimum is too large

 Nonparametric models 
 requires storing and computing with the entire data set.
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Chap. 8 |  DTW : Pattern Recognition using KNN (without learning)

 Nearest-Neighbor Classifier
 Two pattern classes      and        in the two-dimensional feature space

62



© eric.anquetil@irisa.fr

Chap. 8 |  DTW : Pattern Recognition using KNN (without learning)

 k-Nearest-Neighbor Classifier 
 Observe the     next neighbors of a pattern    

from the sample set.
 Assign    to the class     , which occurs most 

frequently under all     next neighbors. 
 Common selection

m=2 m=3

[Christopher M. Bishop]

m=3
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Chap. 8 |  DTW : Pattern Recognition using KNN (without learning)

 k-Nearest-Neighbor Classifier 
 How to choose k
 Common selection 

 Define K by validation error rate
 Split the training and validation from the initial 

dataset. 
 lot the validation error curve to get the optimal 

value of K. 
 This value of K should be used for all predictions.

k=3

64

The training error rate: The error 
rate at K=1 is always zero for 
the training sample

The validation error rate
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Chap. 8 |  DTW : Pattern Recognition with creating models (Learning phase)

 A basic example to learn one or several model(s) for each class

Learning phase
for each class

Generalisation
phase

Samples …

Model for classe 2
2

2

Gesture models:
One or several models/class

Gesture to recognize

KNN algorithm

results

1
2

3

4

Class 4

Ex: Learning by 
averaging 

or 
by clustering

(cf. chap. On clustering)
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Predefined and fixed set of categories/classes (included in the training dataset)

1 Collecting large and exhaustive training dataset
2

3

User data can be much different from training data (different 
contexts/habits/needs, time-changing, …) 

Expert

Training phase

Learning alg.training 
dataset

Knowledge
base

Recognition alg.

Ap
pl

ica
tio

n

𝑥𝑥,𝑦𝑦?

𝑥𝑥,𝑦𝑦𝑖𝑖

Static classifier
Operation phase

1

3

2

User

Knowledge
base

• Limitations

Chap. 8 |  DTW : Pattern Recognition with creating models: Offline learning

[Almaksour 2011]
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Chap. 8 |  DTW: Averaging of two signals to create a model

 First idea to average to signals
 Alignment based on the warping path φxy of length K 
 Creation of two new aligned signals xK (k) and yK(k) with the same length K

 xK (k) = x(φxxy (k)) yK (k) = y(φyxy (k))

67

x(i) and y(j) 

xK (k) and yK (k) with the same length K 
 result from the resampling of signals x(i) and y(j) 
relatively to φxy (k) 
 average signal is µ(k) (in black).

On drawback: the average signal is longer 
than the two original signals
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Chap. 8 |  DTW: Averaging of more than two time-series

 DTW Barycenter Averaging (DBA) [Petitjean et al. in 2011]
 A global averaging method for dynamic time warping.
 A fast algorithm that insures that the average signal will have a 

reasonable length. 

 The main steps of the algorithms:

 1/ Randomly choose a signal x0(k) from the dataset to initialize the 
average signal:

µ(k) = x0(k), k = 1, ..., M0 where M0 is the length of x0(k).

 2/ Iterate IT times the following steps:
 (a) Align all signals xl(k) on µ(k) and compute warping paths φµx

 (b) Update every point of the average signal µ(k) as the 
barycenter of points associated to it during step (a).
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Chap. 8 |  DTW: Barycenter Averaging Algorithm (DBA)

← 
∈ 

←  − p p 1 

Algorithm  1  DBA : averagingDT W 
 

Require: x0(k) of length  M0, (xl(k))l=1...L  of  lengths  Ml, IT 
K = M0, µ(k)  ← x0(k), k = 1, ..., K 
for   it   ∈  1...IT   do 

assocT ab[k] = ∅, k = 1...K 
for l ∈ 1...L do 
φµxl   ← DT W (µ, xl) 
p ← length(φµxl ) 
while p ≥ 1 do 

(k, n) ← φµxl (p) 
assocT ab[k] ← assocT ab[k] ∪ {xl(n)} 

end while 
end for 
for k 1...K do 

µ(k) mean(assocT ab[k]) 
end for 

end for 
return  µ(k), k = 1, ..., K 

69

[Petitjean et al. in 2011]
[Morel et al. in 2017]
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 Problematic
 Misrecognitions due to overfitting

 Idea 
 To category specific

deformations, called eigen-
deformations, to suppress 
misrecognitions due to overfittng

70Chap. 8 |  DTW : learning category-specific deformations …

[UCHIDA 2005, MOREL 2017]
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Chap. 8 |  DTW : learning category-specific deformations …

 Some results
 Estimating deformation tendencies
 Optimization based on DTW: learning geometric 

distortions from several examples of the same 
symbol [UCHIDA 2005]

 NB: Malahanobis Distance
 Euclidean distance can be re-written as a dot-

product operation

 Mahalanobis distance between two vectors, x and 
y, where S is the covariance matrix.

71

[UCHIDA 2005]

X2
X1
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Chap. 8 |  DTW : For Gesture Analysis

 DTW can also be used for fine gesture analysis (virtual sportive coaching)

Learning phase
for each class

Gesture
analysis phase

Samples …

Model for classe 22

2

Gesture model 
of the analysis class

A class 2 Gesture to analyse

Gesture alignment 
by DTW

results

2 Quality of the 
gesture

Fine feedback of 
the user errors

Ex: Learning by 
averaging
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73Chap. 8 |  DTW : a parallel with Edit distance computation

 Levenshtein
distance
 Insertion
 Deletion
 Substitution

 Extension
 Fusion
 Division
 Pair 

substitution

Coût substitution
Coût suppression
Coût insertion
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Chapitre 9
Pre-segmented Action Recognition: Skeleton based 
and “Statistical” approaches

74
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Chap. 9 |  Segmented pattern representation 75

• A pattern refers to either a whole body action or  dynamic hand gesture

1

2

3

45
6

7
Thumb

IndexMiddle
Ring

Pinky

• The overall process for segmented pattern representation and recognition is:

Step1: 
pre-

processing
Raw

trajectories
Amorphological

trajectories

Step2: 
Temporal 

Split

Overlapping
segments

Step3: 
Features

Extraction

Segmented
pattern 

reprentation

Step4: 
Classifica-

tion
Class label
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Chap. 9 |  Skeleton based Action Recognition based on 3D gesture trajectories 

 Addressing  3D action recognition  in  light of  2D representation
 3D gesture trajectories may be processed similarly to hand-drawn  trajectories

 Same data type  (trajectories or   signal)

 Graphonomic characteristic: 
 a human is the performer  
 Well-established  2D experience



© eric.anquetil@irisa.fr

Chap. 9 |  Pre-segmented Action Recognition (Skeleton based)

 Pre-segmented Action Recognition:
Skeleton based and « statistical » approaches (using SVM)

 Example of two approaches [Boulahia 2017]:  

 A first naïve approach: 
 3DMM : 3D Multistroke Mapping

 3D Multistroke Mapping (3DMM): Transfer of hand-drawn pattern 
representation for skeleton-based gesture recognition. In 12th IEEE 
International Conference on Automatic Face & Gesture Recognition (FG 
2017), 2017.

 A more robust approach:
 HIF3D: Handwriting-Inspired  Features  for  3D action recognition

 HIF3D: Handwriting-Inspired Features for 3D skeleton-based action 
recognition. In 23rd IEEE International Conference on Pattern Recognition 
(ICPR), 2016.
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Chap. 9 |  Action representation by 3DMM: Kinect based patterns: whole body actions

 The overall process for segmented action representation and recognition is:

78

Step1: 
pre-

processing
Raw

trajectories
Amorphological

trajectories

Step2: 
Temporal 

Split

Overlapping
segments

Step3: 
Features

Extraction

Segmented
pattern 

reprentation

Step4: 
Classifica-

tion
Class label

3DMM 
Features -Run

-Shoot
-Joggle
-….
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Chap. 9 |  Action representation by 3DMM - Segmented pattern recognition: synthesis

 Step 1: Pre-processing
 Goal: address the morphological variability issue
 How: perform a normalisation of the raw trajectories according to 

the subject morphology

 Step 2: Temporal split
 Goal: address the morphological sequencing issue (for instance if 

two arms are raised at the same time or one after another, the 
model should distinguish these two different patterns) 

 How: Extract partial segments from the whole pattern according to 
overlapping sliding winodws

79
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Chap. 9 |  Action representation by 3DMM - Segmented pattern recognition: synthesis

 Step 3: Features extraction
 Goal: build the pattern representation that should get the spatial 

relationship between trajectories and the overall shape of the 
produced pattern

 How: It consists in extracting a set of features on the whole pattern 
and on the overlapping segments produced in step 2 

 Step 4: Classification
 Goal: get the class label
 How: using a classifier (here SVM or MLP) trained on a training 

set and then applied on each testing pattern 

80

X1

X2

X2
X1

Activation degree
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Chap. 9 |  Action representation by 3DMM: Step 1 - Pre-processing

 Addressing morphological variability before trajectory extraction

[Kulpa 2005] “Morphology-independent representation of motions  for  interactive  human-like  
animation”, 2005.
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Chap. 9 |  Action representation by 3DMM: Step 2 - temporal hierarchy

 Modelling temporal information: Temporal  Split Extraction
 Handling temporal sequencing
 Features are extracted according to two temporal levels (Level = 2)

 Number of features:
 Without selection : 4x49x3=588
 With selection: between 400 and 80
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Chap. 9 |  Action representation by 3DMM: Step 3 - : dealing with the set of 2D trajectories 

 A first naïve approach 3DMM using direct 2D projection [Boulahia 2016]
 Several strategies to consider all the trajectories

 (a) Mono-Stroke approach 
 We loss the spatial dependencies

 (b) Multi-strokes approach
 Modelling  spatial relationship
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Chap. 9 |  Action representation by 3DMM: Step 3 - Direct 2D features extraction

 [Delaye and Anquetil] “HBF49 feature set: A first unified baseline  for  online  symbol  recognition”, 2013.

Figure: Descripteurs dynamiques  
(positions de départ, longueur  des 
strokes, inflexion)

Figure: Descripteurs statiques  
(histogramme 2D, boite  
englobante)
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Chap. 9 |  Action representation by 3DMM: Step 4 – statistical Learning and classification

 Classification

85

ClassificationFeature 
extraction

Feature extraction
Discriminative features

Here, 2 dimensions Feature space 

Classification
Use a feature vector 
to assign the object to a category (class)

Here, discrimination of 3 classes: “a”, “f”, “x”

Feature 1

Feature 2

(decision boundary) 
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Chap. 9 |  Action representation by 3DMM: Step 4 – statistical Learning and classification

 Learning
 Finding all the parameters 

of a classifier based on
a training set.

 Supervised learning: Generalization
 For the learning, a teacher provides 

a category/class label for 
each pattern in the training set

 Unsupervised learning: Clustering
 The system forms clusters or “natural groupings” of the input patterns
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Learning

ClassificationFeature 
extraction
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87Chap. 9 |  Action representation by 3DMM: Step 4 – statistical Learning and classification

 Learning and generalization capacities
 Learning

 consists of presenting an input pattern and modifying the network parameters (weights) to reduce 
distances between the computed output and the desired output

 Generalization / Feedforward
 consists of presenting a pattern to the input units 

and passing the signals through the network 
in order to get outputs units

output

Input data base Classifieur

Features

classes
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88Chap. 9 |  Action representation by 3DMM: Step 4 – statistical Learning and classification

 Learning: Number of features
 For each temporal windows: 49 features [HBF 49] x 3 projections = 147
 4 temporal windows: the total length of features

 588 (147X1 + 147X  3).
 Feature selection: 

 To limit redundancy
 between 400 and 80

Input data base Classifieur

Features

classes
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Chap. 9 |  Action representation by 3DMM: Some results on the HDM05 dataset

 HDM05 dataset
 HDM05 is an optical marker-based dataset

 M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, A. Weber: Documentation Mocap Database HDM05.
Technical report, No. CG-2007-2, ISSN 1610-8892, Universität Bonn, June 2007. 

 Contains around 100 motion classes including 
 various walking and kicking motions, cartwheels, jumping jacks, grabbing and depositing motions, 

squatting  motions and so on. 
 Each motion class contains 10 to 50 different instances of the same type of motion

 Experimental Protocol
 Evaluation with 11 motion actions. 
 The actions are performed by 5 subjects, while each subject performs each action a couple of times ; 

 this suggests a set of 249 sequences.

 Testing protocol
 3 subjects for learning (142 instances)
 2 subjects for testing (109  instances)
 cross-subjects validation
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Chap. 9 |  Evaluation / Validation: Cross-Validation

 Cross-Validation: K-fold
 Successively setting apart a block of data (instead of a single observation)
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Test set

Data

Test set Test set Test set

Training set
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Chap. 9 |  Some results of 3DMM approach on the HDM05 dataset

 Results (HDM05 dataset)

Method Authors & Year #Features Reco.  rate (%)

Dynamic Time Warping [Reyes et al., 2011] - 82.08
MIJA/MIRM + LCSS [Pazhoumand-Dar et  al., 2015] - 85.23
SMIJ +  Nearest neighbour [Ofli et al., 2014] - 91.53
LDS + SVM [Chaudhry et al., 2013] - 91.74
Skeletal Quads + SVM [Evangelidis et al., 2014] 9360 93.89
Cov3DJ + SVM [Hussein et al., 2013] 43710 95.41
BIPOD + SVM [Zhang and Parker, 2015] - 96.70
HOD + SVM [Gowayyed  et al., 2013] 1116 97.27

3DMM + SVM + Level = 1 100 91.74
3DMM + MLP + Level = 1 20 92.66

3DMM + SVM + Level = 2 400 94.49
3DMM + MLP + Level = 2 80 94.49

Table: Comparisons between 3DMM approach, with and without  
temporal split, and previous approaches on the HDM05 dataset.
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Chap. 9 |  Pre-segmented Action Recognition (Skeleton based)

 Pre-segmented Action Recognition:
Skeleton based and « statistical » approaches (using SVM)

 Example of two approaches [Boulahia 2017]:  

 A first naïve approach: 
 3DMM : 3D Multistroke Mapping

 3D Multistroke Mapping (3DMM): Transfer of hand-drawn pattern 
representation for skeleton-based gesture recognition. In 12th IEEE 
International Conference on Automatic Face & Gesture Recognition 
(FG 2017), 2017.

 A more robust approach:
 HIF3D: Handwriting-Inspired  Features  for  3D action 

recognition
 HIF3D: Handwriting-Inspired Features for 3D skeleton-based action 

recognition. In 23rd IEEE International Conference on Pattern 
Recognition (ICPR), 2016.
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Chap. 9 |  Action representation by HIF 3D: 3D features inspired by 2D features

 The overall process for segmented dynamic hand gesture recognition:

93
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Chap. 9 |  Action representation by HIF 3D: 3D features inspired by 2D features

 Overview of the features
 A new feature-set inspired by an efficient hand-drawn descriptor 

but entirely dedicated to the 3D skeleton trajectories

 HIF3D: Handwriting-Inspired Features for 3D skeleton-based action recognition. [Boulahia, ICPR 2016].
 Extending HBF49 to form HIF3D so as to process directly 3D  trajectories instead of projecting
 Better capturing the correlation between joint trajectories
 Reducing dimensionality and avoiding redundancy
 Adding new features (such as volume related features) which are more adapted to 3D patterns

 A set of 89 features (very compact comparing to existing feature-set)
 41 Extended features, i.e. features which can directly be extended from 2D trajectory to 3D one.
 48 Newly features, i.e. carry the characteristic information identified for handwritten pattern but have 

different formulations since the original 2D formulas can not be directly applied for the 3D case.
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Chap. 9 |  Action representation by HIF 3D: 3D features inspired by 2D features

 Extended features:

 Starting points: 

 x1, y1 and z1 are the coordinates of the first point of the pattern
 cx, cy and cz are the coordinates of the the center of the bounding box B
 l is the greatest side of the bounding box B
 The bounding box B is the cuboid that enclose the pattern

 First point to last point vector:

 v is the vector that relates the first and the last point of the pattern

 Bounding box diagonal angles:

 h, w and d  are the height, the width and the depth of the bounding box 
B, respectively.
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Chap. 9 |  Action representation by HIF 3D: 3D features inspired by 2D features

 Newly features:

 3D zoning histogram: 
 We define a regular 3D partition of the bounding box B into 3 ×3 × 3 voxels 

resulting in twenty-seven zoning features 
 Histograms are built by computing a fuzzy weighted contribution from each point si

to its eight neighbouring voxels, where the weights are proportional to the distance 
from the point to the voxels center cj,k,l .

 With 0 ≤ μ jkl(si) ≤ 1 is the contribution of point si to the voxel with center c j,k,l for 
each 1 ≤ j,k,l ≤ 3 

 Convex Hull features:
 To capture the overall shape produced during the gesture we consider the convex

hull H of the resulting pattern S
 We first compute its convex hull volume VH.
 Then we extract the normalized volume and the compactness as two additional

features

 L is the total length of the pattern and w, h and d are the height, the width and the 
depth of the bounding box B, respectively
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Method Authors & Year #Features Reco.  rate (%)

Dynamic Time Warping [Reyes et al., 2011] - 82.08
MIJA/MIRM + LCSS [Pazhoumand-Dar et  al., 2015] - 85.23
SMIJ +  Nearest neighbour [Ofli et al., 2014] - 91.53
LDS + SVM [Chaudhry et al., 2013] - 91.74
Skeletal Quads + SVM [Evangelidis et al., 2014] 9360 93.89
Cov3DJ + SVM [Hussein et al., 2013] 43710 95.41
BIPOD + SVM [Zhang and Parker, 2015] - 96.70
HOD + SVM [Gowayyed  et al., 2013] 1116 97.27

3DMM + SVM + Level = 2 400 94.49

HIF3D + SVM + Level = 2 356 98.17

Table: Comparisons between HIF3D approach, with 
temporal split, and  previous approaches on the 
HDM05 dataset.

Chap. 9 |  Some results of HIF3D approach on the HDM05 dataset

 Experimental Protocol : 3 subjects for learning (142  instances) + 2 subjects for testing 
(109  instances)
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Chapitre 10
Non-segmented Action Recognition: Skeleton based 
and “Statistical” approaches
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Chap. 10 |  2D and 3D Action/Gesture recognition: a challenge ?

 Introduction: understand the problematic of gesture interaction
 What is a gesture: the different natures of gestures
 Human Computer Interaction: new opportunities

 Gesture recognition: Isolated Gestures Classification (segmented)
 Overview of the task: recognizing isolated gestures (The overall pattern recognition process)
 Machine Learning and Pattern recognition: a short overview of some existing techniques

 Gesture classication: “Time-series” approaches
 Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

 Gesture recognition in real-time streaming (non segmented)
 Overview of the task: recognizing in real-time streaming
 Non-segmented Action Recognition: Example of one approaches [Boulahia 2017] 
 Presentation of experimental results using Kinect and Leap Motion 

 Early Gesture recognition
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Chap. 10 |  Gesture recognition in real-time streaming (non segmented): overview

 The challenges that should be addressed are:

 Temporal variability: that occurs when subjects perform gestures with different speeds.*

 Inter-class spatial variability: which refers to disparities between the displacement amounts induced by 
different classes (i.e. long vs. short movements). 

 Intra-class spatial variability: caused by differences in style and gesture amplitude. 
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Chap. 10 |  Gesture recognition in real-time streaming (non segmented): overview 101

 Temporal 
variability

 Inter-class spatial 
variability

 Intra-class spatial 
variability
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Chap. 10 |  Gesture recognition in real-time streaming (non segmented): step 1

 Step 1: curvilinear segmentation 
 Dynamically defining windows depending on the amount of information (i.e. motion) available in the 

unsegmented flow.
 The metric used to measure the amount of information is the curvilinear displacement of joints. 

 function CuDi(FS,FE) that computes the curvilinear displacement 
for a given motion segment, starting at frame FS and ending at FE, as follows:

 where         is the instantaneous average displacement

 Curvilinear window as being a sliding window 
 whose size is continuously updated such that it encompasses, at each frame, a specific curvilinear 

displacement. 

102

Handwriting-inspired representation for 3D skeleton-based patterns recognition
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Chap. 10 |  Gesture recognition in real-time streaming (non segmented): step1

 Step 1: curvilinear segmentation 

103

Illustration of the difference between the curvilinear window 
and the usual temporal sliding window.
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Chap. 10 |  Gesture recognition in real-time streaming (non segmented): step 2

 Step 2: curvilinear-based classifiers
 To address the second issue, inter-class spatial variability, we 

propose to use as many classifiers as there are curvilinear 
displacements.

 Each classifier Ci is trained to recognize all action classes but 
according to the curvilinear size of classe Gi

 We constitute the training set of a classifier Ci by extracting 
local features (HIF3D) according to its corresponding 
curvilinear window.

 SVM classifiers are then trained on each training set.
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Chap. 10 |  Gesture recognition in real-time streaming (non segmented): step 3

 Step 3: Decision process (at each frame)
 The fusion system is mainly composed of:

 as many local histograms as there are classifiers  && a global histogram 

105

Illustration of the global histogram functioning at frame i with 
three classifiers which can G1, G2 or G3
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Chap. 10 |  Gesture recognition in real-time streaming (non segmented): step 3

 Step 3: Decision process
 Each local histogram has as many entries as there are 

classes to predict. 
 It is used to cumulate (at each frame) the score of 

each class predicted by the associated classifier Ci.
 Then, at each instant, each local histogram is updated
 the jth entry of a histogram Hisi associated with classifier Ci is 

updated at each instant: 
 β equals to the difference between 

 the score of the currently predicted class, i.e. Predicted_i, 
 and the score of the secondly ranked predicted class by 

the classifier Ci. 
 γ corresponds to the difference between 

 the score of Predicted_i
 and that of jth class corresponding to the jth entry of the 

histogram.  

106

Illustration of a local histogram functioning with 
three classes at frames 4, 5, 6 and 7
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Chap. 10 |  Gesture recognition in real-time streaming (non segmented): step 3

 Step 3: Decision process
 Then, at each instant, each local histogram is used to update 

the global histogram. 
 This latter is responsible for emitting the final decision.  

 At each decision, all histograms are reinitialized to zeros, as 
are the cumulated curvilinear displacements for each classifier.  
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Illustration of a local histogram functioning with 
three classes at frames 4, 5, 6 and 7

Illustration of the global histogram functioning at 
frame 7 with three classifiers which can G1, G2 or G3
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Chapitre 11
Presentation of experimental results using Kinect and 
Leap Motion
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Chap. 11 |  Gesture recognition in real-time streaming (non segmented): MSRC-12 Dataset

 DataSet: MSRC-12 dataset 
 The Microsoft Research Cambridge-12 dataset 

(MSRC-12): sequences of skeleton data, 
represented as 20 joint locations. 

 S. Fothergill, H. Mentis, P. Kohli, S. Nowozin, 
Instructing people for training gestural 
interactive systems, in: Proceedings of the 
SIGCHI Conference on Human Factors in 
Computing Systems, ACM, pp. 1737–1746.

 12 gestures performed by 30 subjects
 594 sequences (about 50 sequences per 

class)
 a single gesture is performed several times 

along a sequence.
 Participants were provided with 5 instruction

modalities including: 
 images, text, video, images + text, and video 

+ text. 
 The dataset is annotated with action points

 a pose within the gesture that clearly 
identifies its completion.

109

[Xi Chen, Markus Koskela 2015]
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Chap. 11 |  Gesture recognition in real-time streaming (non segmented): MSRC-12 Dataset 110

 Protocol (MSRC-12 dataset )
 According to the leave-subjects-out protocol. 
 Mean Fscore and its standard deviation is reported for each instruction modality.

 Other approaches
 ELS = Efficient Linear Search; 
 RF = Random Forests; 
 RTMS = Real-Time Multi-Scale; 
 SSS =Structured Streaming Skeleton.
 CuDi3D [Boulahia 2017] 
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Desired Positive Desired Negative

Test Outcome
Positive NE True Positive False Positive

Negative NR False negative True Negative

A
EN A

RN
R
EN R

RN

 Evaluation measure

 Recognition/Error Rates
 TAR: True Acceptance Rate
 FAR: False Acceptance Rate

 Accuracy Rates (“fiabilité”)
 Global performance point of view

 recall (“rappel”)
 information retrieval the number of relevant documents  retrieved by a 

search / the total number of existing relevant documents

 Precision (“précision”)
 the number of items correctly labeled ∈the positive class /

the total number of elements labeled ∈ the positive class
 information retrieval number of relevant documents retrieved by a search 

divided by the total number of documents retrieved by that search
 The F-Score (or F Measure) conveys the balance between the precision and 

the recall.

Chap. 11 |  Evaluation measure
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R

A
R

N
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http://en.wikipedia.org/wiki/F1_score


© eric.anquetil@irisa.fr

Chap. 11 |  Gesture recognition in real-time streaming / segmented: (DHG) dataset

 DHG DATASET: Dynamic Hand Gesture
 DHG is a recent dynamic hand gesture dataset

 [De Smedt 2016] Quentin De Smedt, Hazem Wannous, and Jean-Philippe Vandeborre. Skeleton-based dynamic hand gesture 
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1–9, 2016.

 14 pre-segmented hand gestures
 performed in two ways: using one finger and the whole hand.
 Each gesture is performed between 1 and 10 times by 28 participants 

 in 2 ways (one finger / the whole hand)
 resulting in 2800 instances. 

 Each frame of sequences contains 
 a depth image
 the coordinates of 22 joints both in the 2D depth image space 

and in the 3D world space forming a full hand skeleton.
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Chap. 11 |  Gesture recognition in real-time streaming / segmented: (DHG) dataset

 DHG: Segmented Gesture recognition in real-time streaming
 COMPARISON BETWEEN 

 [Boulahia 2017] HIF 3D APPROACH 
 AND PREVIOUS APPROACHES 

 CONSIDERING 14 AND 28 GESTURES ON DHG* DATASET

113

[SHREC 2017] Results of the SHREC 2017 challenge on dynamic hand gesture recognition
[Boulahia,IPTA 2017] Dynamic hand gesture recognition based on 3D pattern assembled trajectories. In 7th 
IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA 2017).
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Chap. 11 |  Gesture recognition in real-time streaming / segmented: (DHG) dataset

 CONFUSION MATRIX USING 14 GESTURES OF DHG DATASET
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Chap. 11 |  Gesture recognition in real-time streaming / NON-segmented: (LMDHG) dataset

 Weaknesses of existing dynamic hand gesture datasets:
 Composed of very short clips (around 30 frames)
 Gestures are performed with a single hand
 Perfectly denoised, with almost no missing motion segments
 Composed of pre-segmenetd gestures only

 LMDHG dataset:
 A leapMotion (NON-) Segmented DataSet
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Chap. 11 |  Gesture recognition in real-time streaming / NON-segmented: (LMDHG) dataset

 LMDHG dataset: A leapMotion DataSet
 Composed of 50 unsegmented sequences of gestures performed

with either one hand or both hands by 21 participants
 Each sequence contains 13 ± 1 class gestures leading to a total of 

608 gesture instances
 Order of class in each sequence is aleatory
 Each frame contains the 3D coordinates of 46 joints
 Ground truth Start/End along with the class labels are provided
 LMDHG dataset contains noisy and incomplete gestures.
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Chap. 11 |  Gesture recognition in real-time streaming / Segmented: (LMDHG) dataset 117

 CONFUSION MATRIX ON THE COLLECTED LMDHG DATASET
 [Boulahia,IPTA 2017] Dynamic hand gesture recognition based on 3D pattern assembled

trajectories. In 7th IEEE International Conference on Image Processing Theory, Tools and
Applications (IPTA 2017).

 Protocol: train on 70% of the sequences,
 Train i.e. sequences from 1 to 35
 Test on the remaining 15 sequences.

 Overall score:
 Segmented : 84.78%
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Chap. 11 |  Gesture recognition in real-time streaming / NON-segmented: (LMDHG) dataset

 Experimental results on LMDHG dataset : Unsegmented gestures
 BaseLine with a basic approach

 A sliding window approach in which the window size equals to the average of training instances

 Protocol
 train on 70% of the sequences, i.e. sequences from 1 to 35 
 test on the remaining 15 sequences.

 For evaluating this basic approach with unsegmented sequences, we use the Fscore :

 Overall Fscore: 54.11%

118

Dynamic hand gesture recognition based on 3D pattern assembled trajectories
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Chapitre 12
Early Recognition
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Chap. 12 |  2D and 3D Action/Gesture recognition: a challenge ?

 Introduction: understand the problematic of gesture interaction
 What is a gesture: the different natures of gestures
 Human Computer Interaction: new opportunities

 Gesture recognition: Isolated Gestures Classification (segmented)
 Overview of the task: recognizing isolated gestures (The overall pattern recognition process)
 Machine Learning and Pattern recognition: a short overview of some existing techniques

 Gesture classication: “Time-series” approaches
 Pre-segmented Action Recognition: Skeleton based and “Statistical” approaches

 Gesture recognition in real-time streaming (non segmented)
 Overview of the task: recognizing in real-time streaming
 Non-segmented Action Recognition: Example of one approche [Boulahia 2017] 
 Presentation of experimental results using Kinect and Leap Motion 

 Early Gesture recognition
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Chap. 12 |  Gesture Early Recognition: Introduction

 One possible Goal for Early recognition: 
 To merge Direct and Indirect interactions into a same interface
 we have to distinguish gesture in the very beginning part

 One Solution: 
 a reject option based multi-classifier system 
 for handwritten gesture early recognition [Zhaoxin 2016]
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Chap. 12 |  Gesture Early Recognition: Difficulties for Recognition

 Goal: recognize the gesture 
 from their early part 
 instead of waiting until the end of them.

 Difficulties
 to deal with the common beginning part ambiguity
 The proportion of the earliness is unpredictable 

 (a) A normalized gesture as a template. 
 (b) (c) In a size free context.
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Chap. 12 |  Gesture Early Recognition: A multi-classifier early recognition system

 During the training, each classifier dedicates to different part of gestures 
(short, medium, long)
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Chap. 12 |  Gesture Early Recognition: Reject option 

 One strategy: A reject option based multi-classifier early recognition system
 All classifiers try to recognize the gestures
 The fusion module merge trustable decisions

 Two types of reject are used to evaluate the confidence
 - ambiguity: the shape looks like beginning of several different gesture classes
 - outlier: the classifier has never seen this type of shape
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Wait for 𝑙𝑙𝛿𝛿
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length

Classifier
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Reject
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125Chap. 12 |  Gesture Early Recognition: Reject option

Good 
recognition

Confusion

Reject

Distance 
Reject

Unknown
input
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Chap. 12 |  Gesture Early Recognition: Ambiguity rejection

 Ambiguity rejection [5] 
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Ambiguous area

𝜓𝜓𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗
𝑝𝑝𝑖𝑖

where 𝑝𝑝𝑖𝑖 is the confidence value of best class, 

𝑝𝑝𝑗𝑗 is the second best class from the classifier.

[5] H. Mouchère and E. Anquetil. A unified 
strategy to deal with different natures
of reject. In Pattern Recognition, 2006. ICPR 
2006, volume 2, pages 792-795, 2006.

Classifier
ℎ1

Reject
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Chap. 12 |  Gesture Early Recognition: Outlier rejection

 Outlier rejection 
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Estimate the outlier confidence value

using the minimum distance to the prototypes:

𝐷𝐷𝑖𝑖 = min
𝑗𝑗∈𝑁𝑁

(𝑑𝑑 𝑔𝑔𝑡𝑡,𝑔𝑔𝑖𝑖
𝑗𝑗 )

𝑔𝑔𝑡𝑡 is a test sample, 𝑔𝑔𝑖𝑖 is the prototype sample of 

class i, N is the number of prototypes.

 Reliability function 

𝜓𝜓𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂 = �𝑒𝑒
−(𝐷𝐷𝑖𝑖−𝜇𝜇)

2𝜎𝜎2

1

if 𝐷𝐷𝑖𝑖 ≥ 𝜇𝜇

if 𝐷𝐷𝑖𝑖 < 𝜇𝜇

Where 𝜇𝜇 and 𝜎𝜎 is the minimum distance and deviation computed from validation set.

Outlier rejection area

Classifier
ℎ1

Reject
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Chap. 12 |  Gesture Early Recognition: consistance checking 

 Dynamic decision with consistance checking (N)
 N consecutive identical results in the stream of outputs
 Several recognitions during the drawing with more and more information
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Reject Line Triangle Triangle

First decision Decision with consistance checking 
N
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Chap. 12 |  Gesture Early Recognition: Experiments

 Examples of Gestures: MGSet/ILG datasets
 (MGSet) Multi-stroke gestures (45 classes, 33 

users, 6K samples)
 (ILG) Single-stroke gestures  (45 classes, 21 users, 

2K samples)
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Chap. 12 |  Gesture Early Recognition: Experiments

 Results (MGSet)
 (MGSet) Multi-stroke gestures 

(45 classes, 33 users, 6K samples)
 Results with decision consistence: 

reject opt. allows to improve earliness
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N
With Reject Option (MGSet)

TAR FAR RR Earliness Avg. T (ms)

1 81.89% 14.56% 3.54% 37.04% 456.21

2 83.44% 10.85% 5.71% 46.82% 523.34

3 82.38% 8.85% 8.77% 55.89% 591.33
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Chapitre 13
Fuzzy Clustering
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132Chap. 13 |  Fuzzy clustering: Introduction
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133Chap. 13 |  Fuzzy clustering: Examples
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134Chap. 13 |  Fuzzy clustering: Outline
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135Chap. 13 |  Fuzzy clustering: Data Representation
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136Chap. 13 |  Fuzzy clustering: Data Representation
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137Chap. 13 |  Fuzzy clustering: Different clustering families
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138Chap. 13 |  Fuzzy clustering: Alternating Clustering methods
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139Chap. 13 |  Fuzzy clustering: Hard C-Means
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140Chap. 13 |  Fuzzy clustering: Constrained crisp partition
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141Chap. 13 |  Fuzzy clustering: Hard C-Means
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142Chap. 13 |  Fuzzy clustering: Fuzzy C-Means



© eric.anquetil@irisa.fr

143Chap. 13 |  Fuzzy clustering: Fuzzy partition



© eric.anquetil@irisa.fr

144Chap. 13 |  Fuzzy clustering: Fuzzy C-Means
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145Chap. 13 |  Fuzzy clustering: Fuzzy C-Means
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146Chap. 13 |  Fuzzy clustering: Fuzzy C-Means / example
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147Chap. 13 |  Fuzzy clustering: Possibilistic clustering
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148Chap. 13 |  Fuzzy clustering: Possibilistic Clustering
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149Chap. 13 |  Fuzzy clustering: Cluster validity
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150Chap. 13 |  Fuzzy clustering: two different goals
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151Chap. 13 |  Fuzzy clustering: Shell clustering
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152Chap. 13 |  Fuzzy clustering: Examples
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Chapitre 15
Classification: Linear Discriminant Functions
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Chap. 15 |  Classification with Linear Discriminant Functions

 Pattern                                          element in the n-dimensional vector space  
 i.e.       numerical features
 Assumption: 

 Classes take separable regions which can be separated by linear discriminant  functions
 Parametric models
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Chap. 15 |  Classification with Linear Discriminant Functions

 How does it work?
 Labeled training data
 Calculate discriminant function (e.g., perceptron algorithm)

 Discriminant function

 For an unknown pattern   :

155



© eric.anquetil@irisa.fr

Chap. 15 |  Linear Discriminant Functions – Generalization 

 Linear discriminant functions are not always sufficient
 i.e. non linear hyperplanes are needed in      .
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Chap. 15 |  Linear Discriminant Functions – Generalization 

 Linear disriminant function

 Generalized discriminant function

 With

arbitrary functions

 Procedure
 Reduce any arbitrary discriminant function of the above mentioned form to the linear form  by 

transforming the given pattern     by application of functions          into      .
 In general             , i.e. to enable linear separability transform patterns into a space of higher dimension.
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Chap. 15 |  Linear Discriminant Functions – Generalization 

 Example of function 

(x,y) (x,y,x2+y2)

2 dimensions 3 dimensions

[Thierry Artières]
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Neural Networks
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160Chap. 16 |  Neural Networks

x3
x2
x3
…
xm

Class 1
Class 2
…
Class C

Input feature OutputOutput=F(input)

F

Shape properties Classification system Class membership
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161Chap. 16 |  MultiLayer Perceptron (MLP)

Input of a neural  j f: activation function Input of neural K
of the layer 0 (example sigmoid): 

)( jafjy =

0
0
1

-1

i

... ...
...

x1

x2

…

xm

...

...

Input layer Hidden layer Output layer

bias Class 1

…

Class K

Class CWji

j

∑
=

+=
m

i jwixjiwja
1 0 ∑

=
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n

i kwjykjwka
1 0

Wkj
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162Chap. 16 |  MLP: Learning and generalization 

 Learning and generalization capacities
 Learning

 consists of presenting an input pattern and modifying the network parameters (weights) to reduce 
distances between the computed output and the desired output

 Generalization / Feedforward
 consists of presenting a pattern to the input units 

and passing the signals through the network 
in order to get outputs units

output

Input data base Classifieur

Features

classes
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Chap. 16 |  MLP: Universal approximator

 MLP: Universal approximator: [A. Kolmogorov]
 “Any continuous function from input to output can be implemented in a three-layer net, given sufficient 

number of hidden units, proper nonlinearities, and weights.”

Any function 
from input to output 
can be implemented 
as a three-layer 
neural network

[Duda, PHart, Stork, 
“Pattern Classification”]
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Chap. 16 |  MLP: Learning

 The aim
 Construction of a network :

 to define the nonlinear functions and the weight values

 The Learning process (supervised)
 Some empirical choices

 Number of neural and layers
 Activation functions

 Principles
 Present the network a number of inputs and their corresponding outputs
 See how closely the actual outputs match the desired ones
 Modify the parameters to better approximate the desired outputs
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Chap. 16 |  MLP: Back-propagation (BP) algorithm

 Principle
 The error signal is obtained from the comparison between the target and estimated signal. 
 The error signal is propagated layer by layer from the output layer to the input layer to adaptively adjust 

all weights in the MLP.
 Back-propagation (BP) algorithm

 Let tk be the k-th target (or desired) output and yk be the k-th computed output with k = 1, …, c  and w 
represents all the weights of the network

 The training error to minimize:
 Goal: 

We goes through the weight 
space to find the point
corresponding to the
minimum of the error

 Method: gradient descent
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Chap. 16 |  MLP: Back-propagation (BP) algorithm

 The backpropagation learning rule is based on gradient descent

 Going back from “output” to “input”:
1 Calculate the derivatives of the error with respect to weights
2 Using these derivatives for adjust the weights

where η is the learning rate which 
indicates the relative size of the change 
in weights
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Chap. 16 |  MLP: Back-propagation (BP) algorithm

 Sensitivity deduce from the gradient descent 
hidden-to-output (j   k) weights

jkkj zw ηδ−=∆
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Chap. 16 |  MLP: Back-propagation (BP) algorithm

 Sensitivity deduce from the gradient descent 
at a hidden unit (ij): 
 the sum of the individual sensitivities at the output units 

weighted by the hidden-to-output weights wkj; all multipled by f’(a)

 Backpropagation algorithm
The weights are initialized with pseudo-random values and are changed in a direction that will reduce the 
error:
Begin initialize nH; w, η, m=0
do m = m + 1

xm ← randomly chosen pattern

wji = wji - ηδjxi; wkj = wkj - ηδkzj
until Stopping criterion

return w

End

∑
=

≡
c

k
kkjjj waf

1
)(' δδ

ijji xw ηδ−=∆
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169Chap. 16 |  MLP: Learning with validation 

 Learning with validation (to avoid overfitting)
 Two Learning Databases:

One for the learning phase
One for the validation of the learning

 Test Database 
Generalization evaluation

Error

Learning cycles

Validation database

Learning database
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170Chap. 16 |  MLP: knowledge modeling

 knowledge modeling
 Easy/Powerful learning
 Knowledge are distributed il all the weight of network
 Black-box system
 Discriminative learning: with Hyper planes
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171Chap. 16 |  Radial-Basis Function Neural Networks (RBFNN)

 Φ : radial activation function Output 
distance measure to the prototype 
(linear combination)
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Chap. 16 |  RBFNN : Learning

 Two approaches for the learning phase:
 1/ Globally by backpropagation
 2/ In two phases

 a/ clustering to initialize the centers 
of the Radial Basis Function (RBF)

 b/ Output Weights 
 learning by Least Mean Square (LMS)
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Chapitre 17
Reject Option
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174Chap. 17 |  Reject option

Good 
recognition

Confusion

Reject

Distance 
Reject

Unknown
input

ConfusionGood 
recognition
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Chap. 17 |  Reject option with thresholds

 With MLP : only confusion reject
 With RBFNN : both confusion and distance reject
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Chap. 17 |  Distance reject / with thresholds 176

X2

X1
2D space representation
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X2

Pattern to reject

X2
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Chap. 17 |  Confusion reject / with thresholds 177
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178Chap. 17 |  Reject option: Main approaches (distance reject)



[Mouchère07]
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Desired Positive Desired Negative

Test Outcome
Positive NE True Positive False Positive

Negative NR False negative True Negative

A
EN A

RN
R
EN R

RN

 Evaluation measure

 Recognition/Error Rates
 TAR: True Acceptance Rate
 FAR: False Acceptance Rate

 Accuracy Rates (“fiabilité”)
 Global performance point of view

 recall (“rappel”)
 information retrieval the number of relevant documents  retrieved by a search / the total 

number of existing relevant documents

 Precision (“précision”)
 the number of items correctly labeled ∈the positive class /

the total number of elements labeled ∈ the positive class
 information retrieval number of relevant documents retrieved by a search divided by the 

total number of documents retrieved by that search

Chap. 17 |  Evaluation of Recognition Systems

E
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180Chap. 17 |  Evaluation: distance reject / evaluation

 Evaluation of outlier(distance) rejection
 ROC curves (Receiver Operating Characteristics)
 The optimum operating point is the top left point

E
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N
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181Chap. 17 |  Evaluation: confusion reject / evaluation

 Evaluation of confusion rejection
 error/reject curve (E/R curve)
 The optimum operating point is the bottom left point
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Chapitre 18
Support Vector Machines
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Chap. 18 |  Basic notion of Support-Vector-Machines (SVM)

 Origin in statistic learning theory; class of optimal classifiers
 Main problem of the statistic learning theory: Generalization ability

 When does a low training error cause a low real error?
 Large/Max-Margin classifier / Linear Separable Classes 

 With SVM a discriminating hyperplane with maximal border is searched.
Optimal: that with the largest of all possible 
discrimination planes

 Clear reasonable (with constant intra classes 
variation classification confidence grows with 
increasing interclass distance)

 Theoretically SVM are justified by statistic 
learning theory

Discrimination line 2 is better than line 1

Volker Märgner
Haikal El Abed
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Chap. 18 |  Basic notion of Support-Vector-Machines (SVM)

 Training max-Margin classifier
 Constraint optimization (two classes C1 et C2 (+1,-1))

 To find support vector /hyperplan parameters
 Margin to closest +1 (u1) and -1 (u2) points to be 1

 Maximize

 Minimize

 Unconstrained problem using Lagrange multipliers

Discrimination line 2 is better than line 1

Volker Märgner
Haikal El Abed
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Chap. 18 |  Basic notion of Support-Vector-Machines (SVM)

 Classification
 Given unknown vector u, predict class (-1 or 1) as folows:

 The sum is over k support vectors (xi,yi)
 If Not linearly separable (Soft Margin)

 Vectors ui outside the volume, which 
are correctly classified (ci) i.e. 

 Vectors inside the volume, which 
are correctly classified, i.e. 

 Vector, which are wrongly classified

 Parameter C can be viewed as a way to control 
overfitting:  it “trades off” the relative importance 
of maximizing the margin and fitting the training data.
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Chap. 18 |  Basic notion of Support-Vector-Machines (SVM)

 Nonlinear SVM  try a higher dimensional space
 Problem: Very high dimension of the feature space
 i.e. polynomes -th order

 Advantage with SVM
 Learning depends only on dot product of sample pairs
 Recognition depends only on dot product of unknown with sample

 Trick with kernel functions:
 Originally in            only scalar products         necessary
 New in           only scalar product                     necessary

 Solution:
 must not be calculated explicitly, but can be expressed with reduced complexity with kernel 

functions
 Example: for the transformation 

 computes the kernel function
the scalar product in the new feature space

(x,y) (x,y,x2+y2)
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Chap. 18 |  Basic notion of Support-Vector-Machines (SVM)

 Strengthens of SVM
 SVM supplies very good classification results according to present expertise; for a set of tasks it is 

considered as the “Top Performer”
 Sparse-representation of the solution by support vectors
 Easily applicable: small parameter set, no a-priory-knowledge necessary
 Theoretical statements about results: global optimum, generalization ability

 Weaknesses of SVM
 Multi-class approach still subject of research (extension to more classes e.g. with a hierarchical 

procedure, where one certain class and the remainder are regarded as two classes )
 Slow and memory-intensive learning
 Tuning of SVMs is still a “black art”: Selection of a specific kernel and suitable parameters is made by 

tests
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